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Summary

We say a graph is locally P if the induced graph on the neighbourhood of every

vertex has the property P . Specifically, a graph is locally traceable (LT ) or locally

hamiltonian (LH) if the induced graph on the neighbourhood of every vertex is

traceable or hamiltonian, respectively. A locally locally hamiltonian (L2H) graph

is a graph in which the graph induced by the neighbourhood of each vertex is an

LH graph. This concept is generalized to an arbitrary degree of nesting, to make it

possible to work with LkH graphs. This thesis focuses on the global cycle properties

of LT , LH and LkH graphs. Methods are developed to construct and combine such

graphs to create others with desired properties.

It is shown that with the exception of three graphs, LT graphs with maximum

degree no greater than 5 are fully cycle extendable (and hence hamiltonian), but

the Hamilton cycle problem for LT graphs with maximum degree 6 is NP-complete.

Furthermore, the smallest nontraceable LT graph has order 10, and the smallest

value of the maximum degree for which LT graphs can be nontraceable is 6.

It is also shown that LH graphs with maximum degree 6 are fully cycle extend-

able, and that there exist nonhamiltonian LH graphs with maximum degree 9 or

less for all orders greater than 10. The Hamilton cycle problem is shown to be

NP-complete for LH graphs with maximum degree 9. The construction of r-regular

nonhamiltonian graphs is demonstrated, and it is shown that the number of vertices

in a longest path in an LH graph can contain a vanishing fraction of the vertices of

the graph.

Various properties of LkH graphs are investigated, and it shown that nonhamil-

tonian LkH graphs exist of order 9 + 2k for k ≥ 1. The Hamilton cycle problem

is shown to be NP-complete for L2H graphs with maximum degree 12, and NP-

complete for graphs that are both LH and L2H with maximum degree 13. The
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Local Properties of Graphs

NP-completeness of the Hamilton cycle problem for LkH graphs for higher values

of k is also investigated.

Key terms:

Graph theory; Hamilton cycle; Hamilton path; locally hamiltonian; locally

traceable; vertex degree; nonhamiltonian; nontraceable; graph order; NP-complete
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Chapter 1

Introduction

1.1 Definitions

Except where otherwise indicated, the definitions to follow can be found in Bondy

and Murty [9].

We limit ourselves to simple graphs, that is, graphs with at most one edge be-

tween any two vertices, no loops, and no directed edges. The set of edges of a

graph G is denoted by E(G) and the set of vertices by V (G). For any set S, |S| is

the cardinality of S. We call |V (G)| the order of a graph, and we often use n(G)

interchangeably with |V (G)|. We call |E(G)| the size of the graph. We can refer

to an edge between two vertices u and v as uv, and also use the notation u ∼ v

to indicate that u and v are neighbours, while u 6∼ v indicates that u and v are

not neighbours. We use N(v) to represent the open neighbourhood of a vertex v,

and N [v] for the closed neighbourhood. If there is room for ambiguity regarding to

which graph we’re referring, we use a subscript, for example, NG(v).

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆

E(G). An induced subgraph on a set X of vertices in V (G) is the graph obtained

by starting with X and adding an edge between two vertices u and v in X if there

is an edge between u and v in G. This is written as 〈X〉. The graph G −X is the

graph obtained by removing the vertices in X from G and all the edges incident to

vertices in X.

The degree of a vertex v is the number of edges incident to v, and is denoted

by d(v). The maximum and minimum degrees of the vertices of G are denoted by
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∆(G) and δ(G), respectively, and if the graph we’re referring to is clear from the

context, we may just use ∆ and δ. We will refer to ∆(G) and δ(G) as the maximum

degree and the minimum degree of G.

Two graphs G and H are isomorphic if there is a bijection φ : V (G) → V (H)

such that two vertices in G are adjacent if and only if they are also adjacent in H.

A complete graph Kn is a graph on n vertices with an edge between any two

vertices in V (Kn). A k-clique in a graph G is a subgraph of G that is isomorphic

to the complete graph Kk. An r-regular graph is a graph in which all vertices have

degree r, where r is a nonnegative integer. A planar graph is a graph that can be

represented in two dimensions in such a way that no edges cross. A k-partite graph

is a graph whose vertex set can be partitioned into k subsets V1, V2, . . . , Vk such that

no two vertices in any given subset are adjacent. A k-partite graph is complete if

any two vertices that are not in the same subset are adjacent, and is denoted by

Kn1,n2,...,nk
, where ni is the cardinality of subset Vi, i = 1, 2, . . . , k.

A graph is connected if, for every partition of its vertex set into two nonempty

sets X and Y , there is an edge with one vertex in X and one vertex in Y . A path

is a simple graph whose vertices can be arranged in sequence in such a way that

two vertices are adjacent if they are consecutive in the sequence, and not adjacent

otherwise. We will use Pn to denote a path containing n vertices. Let P = p1 . . . pi

and Q = q1 . . . qj be two paths in G. Then the concatenation of the two paths

p1 . . . piq1 . . . qj is denoted by PQ. The detour order of a graph is the order of a

longest path in the graph. A cycle is a graph of order at least 3 whose vertices can

be arranged in a cyclic sequence in such a way that two vertices are adjacent if and

only if they are consecutive in the sequence. We will use Cn to denote a cycle of

length n. The girth of a graph G is the length of a shortest cycle in G, and the

circumference of G is the length of a longest cycle in G. A component is a subgraph

in which any two vertices are connected by a path, and no vertex in the component

is connected to a vertex outside the component. The number of components of a

graph G will be denoted comp(G). If X is a subset of V (G), where G is a connected

graph, such that G−X is not a connected graph, then X is referred to as a vertex

cutset of G.

Two paths that have the same end vertices but have no other vertices in common
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are called internally disjoint. A graph G is k-connected if, for any u, v ∈ V (G) there

are at least k internally disjoint paths with end vertices u and v. The connectivity

κ of G is the maximum value of k for which G is k-connected.

A graph is hamiltonian if the circumference of the graph is equal to the order

of the graph. A graph is traceable if the detour order of the graph is equal to the

order of the graph. A cycle C in a graph G is extendable if there exists a cycle C ′

that contains all the vertices of C as well as one additional vertex of G. A graph

G is cycle extendable if every nonhamiltonian cycle is extendable, and is fully cycle

extendable if in addition every vertex lies in a cycle of length 3. A graph G is chordal

if every cycle of length greater than three has a chord.

We say a graph G is locally P if 〈N(v)〉 has the property P for every vertex

v ∈ V (G). In particular, a graph is locally connected (abbreviated LC), locally

traceable (abbreviated LT ), and locally hamiltonian (abbreviated LH) if 〈N(v)〉 is

connected, traceable, and hamiltonian, respectively.

If t is a positive real number, a graph G is t-tough if comp(G − S) ≤ |S|/t for

every vertex cutset S of V (G). The toughness of a graph G, denoted t(G), is defined

as t(G) = min { |S|
comp(G−S)

}, where the minimum is taken over all vertex cutsets S of

G.

A set U ⊆ V (G) is independent if there are no edges between vertices in U .

The independence number of G, denoted α(G), is the cardinality of the largest

independent subset of vertices in V (G).

A connected graph that contains no cycles is called a tree. A generalized version

of this concept is that of a k-tree. A k-tree is a graph that can be constructed in the

following way: start with a complete graph Kk+1. The graph can be expanded by

adding one vertex v of degree k at a time, with the requirement that the 〈N(v)〉 is a

k-clique [28]. If a k-tree G is constructed in such way that no more than one vertex

is added to any clique, then G is called a simple-clique k-tree (SC k-tree) [22].

For any graph H, a graph G is said to be H-free if G does not contain H as an

induced subgraph.

The class of problems that are solvable in polynomial time is denoted by P [10].

A related class of problems is denoted by NP , which stands for nondeterministic

polynomial time. A problem is in NP if it is possible to confirm in polynomial
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time that a proposed solution is a valid solution, implying that P ⊆ NP . A prob-

lem is NP-complete if a polynomial-time algorithm for solving it would result in

polynomial-time solutions for all problems in NP .

The Hamilton Cycle Problem (which will be abbreviated to HCP when conve-

nient), is the problem of deciding whether a graph is hamiltonian or not. We use

the notation ∆∗X to denote the maximum value of ∆ for which the HCP for the class

X of graphs can be calculated in polynomial time.

1.2 Background

This thesis focuses on two local properties, namely local traceability and local hamil-

tonicity, and how they relate to traceability and hamiltonicity. However, I think it

is a good idea to start with an overview of local connectedness, to give the reader an

insight into how the increasing strength of the local condition affects the properties

of the graph. The concept of local connectedness was introduced by Chartrand and

Pippert [11] in 1974, where they proved the following theorem.

Theorem 1.2.1. [11] If G is a connected, LC graph of order at least 3 and ∆(G) ≤

4, then G is either hamiltonian or isomorphic to the complete 3-partite graph K1,1,3.

Kikust [23] investigated the case where G is 5-regular.

Theorem 1.2.2. [23] A connected, LC graph that is 5-regular is hamiltonian.

Hendry [20] strengthened Kikust’s theorem.

Theorem 1.2.3. [20] Let G be a connected, LC graph such that ∆(G) ≤ 5 and

∆(G)− δ(G) ≤ 1. Then G is fully cycle extendable.

Gordon et al. [19] extended the range of vertex degrees of G for which G is fully

cycle extendable.

Theorem 1.2.4. [19] Let G be a connected, LC graph with ∆(G) = 5 and δ(G) ≥ 3.

Then G is fully cycle extendable.

They also proved a useful theorem for when δ = 2:

Theorem 1.2.5. [19] If G is a nonhamiltonian connected, locally connected graph

with δ(G) = 2 and ∆(G) = 5, then at least one of the following holds.

14
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(a) G ∈ {M3,M4,M5} (see Figure 2.4).

(b) G contains two nonadjacent vertices x1, x2 of degree 2 such that N(x1) =

N(x2).

(c) G contains the graph F depicted in Figure 1.1 as induced subgraph.

Figure 1.1: The graph F .

On the other hand, Gordon et al. [19] also showed that the Hamilton Cycle

Problem is NP-complete for LC graphs with maximum degree 7. They thus showed

that 4 ≤ ∆∗LC ≤ 6, and speculated that the correct value is 6. However, at a work-

shop held at Salt Rock in January 2016 at which Susan van Aardt, Alewyn Burger,

Marietjie Frick, Carsten Thomassen and I participated, we proved the following.

Theorem 1.2.6. [1] The Hamilton Cycle Problem for LC graphs with ∆ = 5 and

δ = 2 is NP-complete.

It follows that ∆∗LC = 4. I shall investigate the values of ∆∗LT and ∆∗LH in

Chapters 2 and 3.

A graph is considered to be claw-free if the graph contains no induced K1,3. This

can also be seen as a local condition: a graph G is claw-free if α(〈N(v)〉) < 3 for all

v ∈ V (G). Combining this with local connectedness leads to a powerful result by

Oberly and Sumner [25].

Theorem 1.2.7. [25] Let G be a K1,3-free, connected, LC graph of order at least 3.

Then G is hamiltonian.

Clark [13] showed that the conditions in Oberly and Sumner’s theorem are suf-

ficient to ensure that the graph G is pancyclic, and Hendry [21] noted that Clark

had actually proved that G is fully cycle extendable.

In [25] Oberly and Sumner also made the following conjecture:
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Conjecture 1.2.8. [25] If k ≥ 1 and G is a K1,k+2-free connected, locally k-

connected graph of order at least 3, then G is hamiltonian.

They were not entirely confident that this conjecture is true, but expressed con-

fidence that a weaker alternative conjecture is true:

Conjecture 1.2.9. [25] If k ≥ 1 and G is a K1,k+1-free connected, locally k-

connected graph of order at least 3, then G is hamiltonian.

Currently both conjectures are still open, although some progress has been made

towards settling them. At a workshop hosted by the Banff International Research

Station in August 2015, Susan van Aardt, Jean Dunbar, Marietjie Frick, Ortrud

Oellermann and I considered a weaker connectivity condition: a graph G is k-P3-

connected if, for every pair u, v of non-adjacent vertices of G there exist k distinct

u − v paths of order 3 each. We proved the following result, which is somewhat

weaker than Conjecture 1.2.9.

Theorem 1.2.10. [2] If k ≥ 1 and G is a connected, locally k-P3-connected, K1,k+2-

free graph of order at least 3, then G is fully cycle extendable.

I shall return to Oberly and Sumner’s conjectures in Chapter 4. Oberly and

Sumner [25] also speculated that connected LH graphs might be hamiltonian, but

as they explain in a note at the end of their paper, it was pointed out to them even

before their paper was published that this is not the case. The relationship between

local and global hamiltonicity will be investigated in detail in Chapter 3.

Finally, Ryjáček [33] made a well-known conjecture relating to local connected-

ness:

Conjecture 1.2.11. [33] Every LC graph is weakly pancyclic.

This conjecture has been proven for several classes of LC graphs, such as maximal

planar graphs and chordal graphs, and squares of graphs [33], but is seems difficult

to settle for LC graphs in general [19], and even for LT and LH graphs.
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Locally Traceable Graphs

2.1 Introduction

Locally traceable graphs have received relatively little attention to date. In 1983

Pareek and Skupień [27] considered the traceability of LT and LH graphs. They

posed a number of questions, one of which is related to LT graphs:

Question 1. [27] Is 9 the smallest order of a connected nontraceable LT graph?

In 1998 Asratian and Oksimets [7] considered graphs with hamiltonian balls,

where a ball of radius r centered at a vertex v is the induced graph on vertices at

a distance no greater than r from v (this includes v). A graph for which every ball

of radius one is hamiltonian is simply a locally traceable graph. They proved the

following two results (instead of using the hamiltonian ball terminology we use LT

in the statement of these theorems).

Theorem 2.1.1. [7] Let G be a connected LT graph of order n ≥ 3. Then |E(G)| ≥

2n− 3.

An outerplanar graph is a graph that can be embedded in the plane in such a

way that every vertex borders the outer face. A graph is maximal outerplanar if no

edge can be added while preserving outerplanarity.

Theorem 2.1.2. [7] Let G be a connected LT graph of order n ≥ 3. Then G is

maximal outerplanar if and only if |E(G)| = 2n− 3.

Since all maximal outerplanar graphs are hamiltonian, the next corollary follows

readily:
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Corollary 2.1.3. Let G be a connected LT graph of order n that is not hamiltonian.

Then |E(G)| ≥ 2n− 2.

In 2000 Alabdullatif [5] proved essentially the same results.

It is interesting to note that there is a close relationship between 2-trees and

maximal outerplanar graphs. Markenzon et al. [22] proved the following result:

Theorem 2.1.4. [22] A 2-tree G is a maximal outerplanar graph if and only if G

is a SC 2-tree.

Corollary 2.1.5. A connected LT graph G of order n is a SC 2-tree if and only if

|E(G)| = 2n− 3.

However, not every 2-tree is LT and not every planar hamiltonian LT graph is

a 2-tree - see Figure 2.1 for examples.

Figure 2.1: (a) a 2-tree that is not LT and (b) a planar LT graph that is not a

2-tree.

In Section 2.4 I show that the answer to Question 1 is “No, the smallest order

is 10” and I present the 6 connected nontraceable LT graphs of order 10 that were

found by means of a computer search. I also show that the maximum degree of non-

traceable LT graphs is at least 6. I develop a technique that I call edge identification

to construct nontraceable LT graphs, and use this technique to show that there are

planar connected nontraceable LT graphs of all orders greater than 9. I show, more-

over, that for every n ≥ 10 there exists a connected nontraceable LT graph with

maximum degree 7 and for every n ≥ 22 there exists a connected nontraceable LT

graph with maximum degree 6.

During a two-week workshop at Salt Rock in August 2013 Van Aardt, Frick,

Oellerman and I [3] showed that the HCP for LT graphs with maximum degree
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at most 5 is fully solved (see Theorem 2.3.2 in Section 2.4). In Section 2.3 it will

be shown that there exist connected nonhamiltonian LT graphs of order n with

maximum degree 6 for every n ≥ 7. It will also be shown that the HCP for LT

graphs with maximum degree 6 is NP-complete.

2.2 Constructions and Preliminaries

We begin this section by defining a construction that will be extensively used in

what follows.

Construction 2.2.1. (Edge identification) Let G1 and G2 be two LT graphs such

that E(Gi) contains an edge uivi so that there is a Hamilton path in 〈N(ui)〉 that

ends at vi and a Hamilton path in 〈N(vi)〉 that ends at ui, i = 1, 2. Now create a

larger graph G by identifying the edges u1v1 and u2v2 to a single edge uv (see Figure

2.2). We say that G is obtained from G1 and G2 by identifying suitable edges.

v2 v1 

G1 G 

u2 u1 

G2 

v 

u 

Figure 2.2: The edge identification procedure.

Theorem 2.2.2. Let G1 and G2 be two LT graphs that satisfy the conditions of

Construction 2.2.1. If G1 and G2 are combined by means of edge identification to

create a graph G, then G is LT . If G is traceable, then both G1 and G2 are traceable.

Proof. Let uivi ∈ E(Gi), i = 1, 2 be the two edges used in Construction 2.2.1 to

form the edge uv in E(G).

First suppose w ∈ V (G)− {u, v}. Since the neighbourhood of w is restricted to

vertices that are either all in G1 or all in G2, 〈NG(w)〉 is traceable.

Now suppose w is one of u and v, say u. Let Q1v1 be a Hamilton path in

〈NG1(u1)〉 and let v2Q2 be a Hamilton path in 〈NG2(u2)〉, where Q1 and Q2 are

paths in G1 and G2, respectively. Then Q1vQ2 is a Hamilton path in 〈NG(u)〉.
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Using a similar argument, we can also find a Hamilton path in 〈NG(v)〉. Hence G

is LT .

Now assume P is a Hamilton path in G. If uv is an edge of P , then P is of the

form Q1uvQ2 where Q1uv and uvQ2 are Hamilton paths of G1 and G2 respectively

as illustrated in Figure 2.3 (a). If uv is not an edge of P , then P is of the form

Q1uQ2vQ3 where either Q1uQ2v is a Hamilton path of G1 and uvQ3 is a Hamilton

path of G2 or Q1uvQ3 is a Hamilton path of G1 and uQ2v is a Hamilton path of G2

as illustrated by 2.3 (b) and (c) respectively.

v 

u 

v 

u 

(c) 

(a) 

v 

u 

(b) 

Figure 2.3: Edge identification preserves LT and nontraceable properties.

The following observation will be useful for selecting suitable edges to use in edge

identification.

Observation 2.2.3. Let v be a vertex of degree two in an LT graph. Then any edge

incident with v is suitable for use in edge identification.

This can easily be seen by noting that if N(v) = {u,w}, the edge uw is the

Hamilton path of 〈N(v)〉, and since d〈N(u)〉(v) = 1, any Hamilton path of 〈N(u)〉

has v as an end vertex. In particular, if an LT graph G is combined with K3 by

means of edge identification to create a graph H, then the vertex v ∈ V (K3) that

is not incident with the edge used in the procedure, has degree two. Hence any one

of its incident edges is still suitable for use in edge identification.

The following observation is self-evident.

Observation 2.2.4. If two planar LT graphs G1 and G2 are combined using edge

identification to create graph G, then G is planar.
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The following variation on Construction 2.2.1 will also be needed.

Construction 2.2.5. (Edge identification within a graph) Let G be an LT graph that

contains disjoint edges uivi, i = 1, 2, such that there is a Hamilton path in 〈N(ui)〉

that ends at vi and a Hamilton path in 〈N(vi)〉 that ends at ui. Furthermore, let

N({u1, v1}) ∩ N({u2, v2}) = ∅. Now create the graph G′ by identifying the edges

u1v1 and u2v2 to a single edge uv. We say that G′ is obtained from G by identifying

suitable edges within G.

Theorem 2.2.6. If a graph G′ is constructed from an LT graph G by identifying

suitable edges within G, then G′ is also LT .

Proof. Since N({u1, v1}) ∩ N({u2, v2}) = ∅, the argument used in the proof of

Theorem 2.2.2 applies here as well.

When studying the hamiltonicity of LT graphs we will also need the following

result.

Lemma 2.2.7. Let G1 and G2 be two LT graphs, and let G be a graph obtained

from G1 and G2 by identifying suitable edges. Then if G is hamiltonian, so are both

G1 and G2.

Proof. Let uivi ∈ E(Gi), i = 1, 2 be the edges that are identified to create the

edge uv in G. Since {v, u} is a cutset in G, it follows that no Hamilton cycle in G

can include the edge vu. This implies that any Hamilton cycle in G has the form

vQ1uQ2v where v1Q1u1 is a Hamilton path in G1 and v2Q2u2 is a Hamilton path in

G2. Since viui ∈ E(Gi) for i = 1, 2 it follows that each of G1 and G2 has a Hamilton

cycle.

2.3 Hamiltonicity of Locally Traceable Graphs

We start with a theorem by Van Aardt, Frick, Oellermann and de Wet [3] which

fully solves the HCP for LT graphs with maxiumum degree at most 5. The first part

of Section 2.3 (up to and including the proof of Theorem 2.3.2) has been published

in [3].

Let C = v0v1v2 . . . vt−1v0 be a t-cycle in a graph G. If i 6= j and {i, j} ⊆

{0, 1, . . . , t − 1}, then vi
−→
C vj and vi

←−
C vj denote, respectively, the paths vivi+1 . . . vj
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and vivi−1 . . . vj (subscripts expressed modulo t). Let C = v0v1 . . . vt−1v1 be a non-

extendable cycle in a graph G. With reference to a given non-extendable cycle C, a

vertex of G will be called a cycle vertex if it is on C, and an off-cycle vertex if it is

in V (G)−V (C). A cycle vertex that is adjacent to an off-cycle vertex will be called

an attachment vertex. The following basic results on non-extendable cycles will be

used frequently.

Lemma 2.3.1. [3] Let v0v1 . . . vt−1v0 be a non-extendable cycle C of length t in a

graph G. Suppose vi and vj are two distinct attachment vertices of C that have a

common off-cycle neighbour x. Then the following hold. (All subscripts are expressed

modulo t.)

1. j 6= i+ 1.

2. Neither vi+1vj+1 nor vi−1vj−1 is in E(G).

3. If vi−1vi+1 ∈ E(G), then neither vj−1vi nor vj+1vi is in E(G).

4. If j = i + 2 then vi+1 does not have two neighbours vk, vk+1 on the path

vi+2 . . . vi.

Proof. We prove each item by presenting an extension of C that would result if the

given statement is assumed to be false. For (2) and (3) we only need to consider the

first mentioned forbidden edge, due to symmetry.

1. vixvi+1

−→
C vi.

2. vi+1vj+1

−→
C vixvj

←−
C vi+1.

3. vj−1vixvj
−→
C vi−1vi+1

−→
C vj−1.

4. vkvi+1vk+1
−→
C vixvi+2

−→
C vk.

It is well-known that for k ≥ 3 the wheel Wk is obtained from a cycle C =

w0w1 . . . wk−1w0 by adding a new vertex w and joining it to every vertex of C. We

call C the rim of the wheel, w its centre and edges of the type wwi, 1 ≤ i ≤ k − 1,

the spokes of the wheel. For k ≥ 3, the magwheel Mk is the graph obtained from the
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wheel Wk by adding, for each edge e on the rim of Wk, a vertex ve and joining it to

the two ends of the edge e. Magwheels are examples of connected, nonhamiltonian

LT graphs with δ = 2. The magwheels with ∆ ≤ 5 are depicted in Figure 2.4.

Since the graph K1,1,3 is not LT , it follows from Theorem 1.2.1 that every con-

nected, LT graph of order at least 3 and ∆ ≤ 4 is hamiltonian. Moreover, if G is

any graph with ∆ = 5 that satisfies conditions (b) or (c) of Theorem 1.2.5, then it

is easily seen that G is not LT . However, magwheels are LT . Thus it follows from

Theorems 1.2.1 and 1.2.5 that the magwheels M3,M4,M5 are the only nonhamilto-

nian LT graphs with ∆ ≤ 5. We now show that every connected LT graph with

∆ = 5 that is not a magwheel is fully cycle extendable.

M3 M4 M5 

Figure 2.4: The graphs M3, M4 and M5.

Theorem 2.3.2. [3] Suppose G is a connected LT graph with n(G) ≥ 3 and ∆(G) ≤

5. Then G is fully cycle extendable if and only if G /∈ {M3,M4,M5}.

Proof. It is easy to see that if G ∈ {M3,M4,M5}, then G is not hamiltonian and

hence not fully cycle extendable.

Now suppose that G is a connected locally traceable graph with n(G) ≥ 3 and

∆(G) ≤ 5. Then δ(G) ≥ 2 and hence every vertex of G lies on a 3-cycle. If n(G) = 3

or 4, then G is obviously cycle extendable, so we assume n(G) ≥ 5. Now suppose G

has a non-extendable cycle v0v1 . . . vt−1v0 for some t < n(G). Call the cycle C.

We first prove the following claim.

Claim 1. If vi has an off-cycle neighbour x, then

(1) vi−1vi+1 6∈ E(G),

(2) N(vi) = {vi−2, vi−1, x, vi+1, vi+2},

(3) x is adjacent to at least one of vi−2, vi+2.
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Proof of Claim 1.

(1) Suppose vi−1vi+1 ∈ E(G). First suppose vi has two distinct off-cycle neigh-

bours x and y in G− V (C). Then, since there are no edges from {vi−1, vi+1}

to {x, y}, we may assume, without loss of generality, that there is a 5-path

yxvjvi+1vi−1 in 〈N(vi)〉, where vj is necessarily a cycle vertex. Then, by

Lemma 2.3.1(3), j /∈ {i − 2, i + 2}. Hence, since ∆(G) ≤ 5, N(vj) =

{x, vi, vi+1, vj−1, vj+1}. By parts (1), (2) and (3) of Lemma 2.3.1, vj+1 is not

adjacent to any of the vertices x, vi+1, vj−1. Also vi is not adjacent to vj+1,

since d(vi) ≤ 5, so vj+1 is an isolated vertex in 〈N(vj)〉 and hence 〈N(vj)〉 is

nontraceable, a contradiction.

Thus we may assume that vi has only one off-cycle neighbour x, and x is

adjacent to a vertex vj ∈ N(vi). By Lemma 2.3.1(2) j 6= i− 2, i+ 2. Also, by

Lemma 2.3.1(1), xvi−1, xvi+1 6∈ E(G).

If d(vi) = 4, then, since 〈N(vi)〉 is traceable, we may assume, without loss

of generality, that xvjvi+1vi−1 is a Hamilton path of 〈N(vi)〉. Then, since

∆(G) ≤ 5, it follows that N(vj) = {x, vi, vi+1, vj−1, vj+1}. Lemma 2.3.1(1)

implies that xvj−1, xvj+1 6∈ E(G). But 〈N(vj)〉 is traceable, so vi+1 is adjacent

to at least one of vj−1 and vj+1 and vj−1vj+1 ∈ E(G). This contradicts Lemma

2.3.1(3). Thus d(vi) = 5.

Since vi has only one off-cycle neighbour, there is a cycle vertex vk such that

N(vi) = {vi−1, vi+1, x, vj, vk}. By symmetry we may assume that vk lies on the

path vj+1

−→
C vi−2. Moreover, by Lemma 2.3.1(3), k 6= j + 1. If vi−1 ∈ N(vj),

then it follows from Lemma 2.3.1(3) that vj−1vj+1 6∈ E(G). Then, by Lemma

2.3.1(2), vj−1 is not adjacent to vi−1 and hence not adjacent to any vertex in

N(vj). Similarly, if vi+1 ∈ N(vj), then vj+1 is not adjacent to any vertex in

N(vj). In either case, 〈N(vj)〉 is not traceable. Hence vj is not adjacent to

either vi−1 or vi+1. If vk is adjacent to x, then a similar argument shows that

vk is not adjacent to either vi−1 or vi+1. In this case 〈N(vi)〉 has two distinct

components which is not possible. Since 〈N(vi)〉 is traceable it therefore follows

that vkx 6∈ E(G) and that vk is adjacent to vj and one of vi−1 and vi+1.

Suppose k 6∈ {j + 2, i − 2}. Then N(vj) = {x, vi, vk, vj−1, vj+1} and N(vk) =
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{vi, vj, vk−1, vk+1, vs}, with s being either i+ 1 or i− 1. Thus Lemma 2.3.1(1)

and our assumption that ∆(G) ≤ 5, imply that there are no edges from the

set {vi, vk, x} to the set {vj−1, vj+1}, contradicting the fact that 〈N(vj)〉 is

traceable. Hence k = i − 2 or k = j + 2. In either case, since 〈N(vj)〉

is traceable, vj−1vj+1 ∈ E(G). In the first case C extends to the cycle

vj−1vj+1
−→
C vkvjxvivi−1vi+1

−→
C vj−1. In the second case C extends to the cycle

vj−1vj+1vjxvivk
−→
C vi−1vi+1

−→
C vj−1.

(2) It follows from (1) above and Lemma 2.3.1(1) that the set S = {x, vi−1, vi+1}

is an independent set. Since 〈N(vi)〉 is traceable, it follows that vi has two

cycle neighbours vj, vk 6∈ S. If vj and vk are consecutive vertices on C, then

x is adjacent to only one of them and the other one is adjacent to both vi−1

and vi+1. This contradicts Lemma 2.3.1(2). We may now assume that x is

adjacent to vj and that vk lies on the path vj+2

−→
C vi−2. Since ∆(G) = 5,

N(vi) = {x, vi−1, vi+1, vj, vk}.

Suppose j 6= i + 2. Since 〈N(vi)〉 is traceable, vj is adjacent to either vi−1 or

vi+1.

Case 1. vjvi−1 ∈ E(G).

In this case, N(vj) = {x, vi, vi−1, vj−1, vj+1}. Our assumption that j 6= i + 2

implies that vj−1 is not a neighbour of vi. Furthermore, x, vi−1, vj+1 6∈ N(vj−1)

by parts 1, 2, and 3 of Lemma 2.3.1. Hence vj−1 has no neighbour in N(vj),

so 〈N(vj)〉 is not traceable.

Case 2. vjvi+1 ∈ E(G).

In this case N(vj) = {x, vi, vi+1, vj−1, vj+1}. Now vj+1 6∈ N(vi) and further-

more x, vi+1, vj−1 6∈ N(vj+1) by parts 1, 2, 3 of Lemma 2.3.1. Hence again

〈N(vj)〉 is not traceable.

Thus we have proved that in either case, j = i+ 2.

If vk is adjacent to x, a symmetric argument proves that k = i − 2 and this

proves Claim 1(2) in this case.

Now assume that k 6= i − 2 and x 6∈ N(vk). Since 〈N(vi)〉 is traceable, both

vi−1 and vi+1 are in N(vk). Hence N(vk) = {vi−1, vi, vi+1, vk−1, vk+1}. Now

25



Chapter 2

vk+1 is not a neighbour of vk−1, since otherwise C can be extended to the cycle

vk−1vk+1
−→
C vi−1vkvi+1vixvi+2

−→
C vk−1. Also, vi−1 is not a neighbour of vk−1, since

otherwise C can be extended to the cycle vk−1vi−1

←−
C vkvi+1vixvi+2

−→
C vk−1. Also,

by Lemma 2.3.1(4), vi+1vk−1 6∈ E(G). So vk−1 has no neighbour in N(vk) and

hence 〈N(vk)〉 is not traceable. This proves that k = i − 2. Thus we have

proved (2).

(3) From the proof of (2) it follows, since 〈N(vi)〉 is traceable, that x is adjacent

with vi−2 or vi+2. So (3) also holds.

Now suppose x is an off-cycle vertex that has a neighbour in C and consider the

graph G′ = 〈V (C) ∪ {x}〉.

Suppose x is adjacent to every even-indexed cycle vertex. Then it follows from

Lemma 2.3.1(1) that t is even, say t = 2k and by Claim 1(1) and (2), no odd-indexed

cycle vertex has an off-cycle neighbour. Since ∆(G) ≤ 5, it follows that k ≤ 5 and

no even-indexed cycle vertex has an off-cycle neighbour other than x. Hence G = G′.

We also note that the odd-indexed cycle vertices are mutually nonadjacent, since

otherwise G would be hamiltonian and cycle extendable. So in this case G is clearly

isomorphic to a magwheel Mk for some k ∈ {3, 4, 5}.

Now assume that C has an even-indexed vertex that is not adjacent to x. Then,

in view of Claim 1, we may assume without loss of generality that x is adjacent to

both v0 and v2 but not to v4.

Let

Uj = {x} ∪ {v0, . . . , vj}, j = 1, . . . , t− 1.

We shall prove, by means of strong induction, that each of the following holds

for i = 2, 3, . . . , b t−1
2
c.

(a) v2i has a neighbour bi ∈ {v1, v3, . . . , v2i−3}.

(b) G contains two v0− v2i paths Q2i(−bi) and Q2i(−v2i−1) with vertex sets U2i−

{bi} and U2i − {v2i−1}, respectively.

(c) v2i−1 is not adjacent to any two consecutive vertices on the path v2i
−→
C v0

(d) N(v2i) = {bi, v2i−2, v2i−1, v2i+1, v2i+2}.
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Proof of the basis step (i = 2).

(a) Claim 1(2) implies that N(v2) = {v0, v1, x, v3, v4}. By Lemma 2.3.1(1) and

Claim 1(1), I = {x, v1, v3} is an independent set in 〈N(v2)〉. Since 〈N(v2)〉 is

traceable it follows that every vertex in N(v2)− I is adjacent to two vertices

in I. But we have assumed that x is not a neighbour of v4, so it follows that

v1 is a neighbour of v4. Thus we put b2 = v1.

(b) The paths Q4(−b2) = v0xv2v3v4 and Q4(−v3) = v0xv2v1v4 are the desired

v0 − v4 paths.

(c) Note that it follows from Claim 1(1) and the fact that v1v4 ∈ E(G), that

t − 1 6= 4, so t ≥ 6. Now suppose that v3 has two consecutive neigh-

bours vj and vj+1 on the path v4
−→
C v0. Then C can be extended to the cycle

vj+1

−→
C vt−1Q4(−v3)v5

−→
C vjv3vj+1.

(d) We note that {v1, v2, v3, v5} ⊆ N(v4). By Lemma 2.3.1(4), v1 does not have

two consecutive neighbours on the path v4

−→
C v0. By (c), the same is true for v3.

Since v4 is a neighbour of both v1 and v3, it follows that v5 is nonadjacent to

both v1 and v3. We already know (from Claim 1(2)) that v5 is also nonadjacent

to v2. Hence, since 〈N(v4)〉 is traceable, v4 has a fifth neighbour adjacent to v5

which is a cycle vertex by Claim 1(1). Thus N(v4) = {v1, v2, v3, v5, vj} where

vj is adjacent to v5 and to at least one vertex in {v1, v3}.

Suppose j > 6. Then vj−1 and v5 are distinct vertices. But d(vj) ≤ 5, so

in this case vj is adjacent to only one vertex in {v1, v3}. Call this vertex w.

Then N(vj) = {w, v4, v5, vj−1, vj+1}. We note that vj+1 is not adjacent to

v4, since d(v4) ≤ 5. Moreover, we have shown above that w does not have

two consecutive neighbours on the path v4
−→
C v0, so vj+1 is also nonadjacent

to w. Furthermore, both v5 and vj−1 are nonadjacent to vj+1, since other-

wise C extends to the respective cycles vj+1

−→
C vt−1Q4(−w)wvj

←−
C v5vj+1 and

vj+1

−→
C vt−1Q4(−w)wvjv5

−→
C vj−1vj+1. Thus vj+1 is not adjacent to any vertex

in N(vj), contradicting the fact that 〈N(vj)〉 is traceable. This proves that

j = 6, and hence N(v4) = {v1, v2, v3, v5, v6}.

Thus the basis step is proved.
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Proof of the induction step

Let r be an integer such that 4 ≤ 2r ≤ t − 1 and assume that (a), (b), (c) and

(d) hold for every i ∈ {2, 3, . . . , r − 1}. We now prove that they also hold for i = r.

(a) Parts (a) and (d) of our induction hypothesis imply that there is a vertex

br−1 ∈ {v1, v3, . . . , v2r−5} such that N(v2r−2) = {br−1, v2r−4, v2r−3, v2r−1, v2r}

and also that v2r−1, v2r 6∈ N(v2r−4). By part (a) of our induction hypothesis,

br−1 ∈ {v1, . . . , v2r−5}. By part (c), neither v2r−3 nor v2r−1 is adjacent to br−1,

and also, v2r−1 is not adjacent to v2r−3. Hence, since 〈N(v2r−2)〉 is traceable,

v2r is adjacent to a vertex br ∈ {v2r−3, br−1}.

(b) Since br is either v2r−3 or br−1, part (b) of our induction hypothesis implies

that there is a v0 − v2r−2 path Q2r−2(−br) with vertex set U2r−2 − {br}. Thus

the desired v0−v2r paths are Q2r(−br) = Q2r−2(−br)v2r−1v2r for br = br−1 and

Q2r(−v2r−1) = Q2r−2(−br)brv2r for br = v2r−3.

(c) Suppose v2r−1 has two consecutive vertices vj, vj+1 on the path v2r
−→
C v0. Then

C can be extended to the cycle vj+1

−→
C vt−1Q2r(−v2r−1)v2r+1

−→
C vjv2r−1vj+1.

(d) We have shown that {br, v2r−2, v2r−1, v2r+1} ⊆ N(v2r). By parts (a) and (d) of

our induction hypothesis, v2r+1 is not adjacent to v2r−2. Moreover, it follows

from (c) that v2r+1 is not adjacent to any neighbour of v2r in {v1, v3, . . . , v2r−1}.

Hence v2r+1 is not adjacent to any vertex in {br, v2r−2, v2r−1}. Since 〈N(v2r)〉

is traceable, there is a cycle vertex vj in N(v2r) that is adjacent to v2r+1 and

to at least one vertex in {br, v2r−1}. Since vj is adjacent to the two consecutive

vertices v2r and v2r+1, it follows from Lemma 2.3.1(1) that vj is indeed a cycle

vertex. Moreover, by (c), j ≥ 2r + 2. Since ∆(G) ≤ 5,

N(v2r) = {br, v2r−2, v2r−1, v2r+1, vj, }.

Suppose j 6= 2r + 2. Then N(vj) = {v2r, v2r+1, wj, vj−1, vj+1}, where wj is the

neighbour of vj in {br, v2r−1}.

It follows from (c) that vj+1 is nonadjacent to wj. Also, both vj−1 and

v2r+1 are nonadjacent to vj+1; otherwise (b) would imply that C can be ex-

tended to the respective cycles vj+1

−→
C vt−1Q2r(−wj)wjvjv2r+1

−→
C vj−1vj+1 and
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vj+1

−→
C vt−1Q2r(−wj)wjvj

←−
C v2r+1vj+1. Hence vj+1 has no neighbours in N(vj),

contradicting the fact that 〈N(vj)〉 is traceable. Hence j = 2r + 2 and thus

N(v2r) = {br, v2r−2, v2r−1, v2r+1, v2r+2}.

This concludes the induction and proves that (a), (b), (c), (d) hold for every

i ∈ {2, 3, . . . , b(t− 1)/2c}.
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Figure 2.5: M5, centered at v1.

If t is odd, then it follows from (d) that vt−1v1 ∈ E(G), contradicting Claim 1(1).

Hence t is even, say t = 2k. We have shown thatN(v2k−2) = {v2k−4, v2k−3, v2k−1, v0, bk−1}

where bk−1 ∈ {v1, v3, . . . , v2k−5}. Since I = {bk−1, v2k−3, v2k−1} is an independent set

in 〈N(v2k−2)〉 and 〈N(v2k−2)〉 is traceable, v0 has two neighbours in I. By Claim

1(2), v0 is not adjacent to v2k−3. Hence v0 is adjacent to bk−1 and so bk−1 = v1 by

Claim 1.

But in the proof of (a) we showed that for each i ∈ {2, 3, . . . , k − 1}, the vertex

bi is either bi−1 or v2i−3, so bi−1 lies on the path v0
−→
C bi. Thus the fact that bk−1 = v1

implies that bi = v1 for every i ∈ {1, 2, . . . , k − 1}.

Thus we have proved that v2i is adjacent to v1 for every i ∈ {0, 1, . . . , k − 1}.

But then G is a magwheel with k spokes, centered at v1, and k ≤ 5 since ∆(G) ≤ 5.

The case k = 5 is illustrated in Figure 2.5.

Theorem 2.3.2 shows that there are only three nonhamiltonian connected LT

graphs with maximum degree 5. For LT graphs with maximum degree 6 we now

prove the following.

Theorem 2.3.3. For any n ≥ 8 there exists a nonhamiltonian planar connected LT

graph G that has order n and maximum degree 6.
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Proof. Let G7 be the graph M3, depicted in Figure 2.4. For each n ≥ 8, let Gn

be the graph of order n obtained by combining Gn−1 with a K3 by means of edge

identification, starting with the edge v1v2, and each time using one of the last edges

added, choosing the edge such that the same vertex is never used more than twice,

and specifically v1 is only used once, as shown in Figure 2.6.

It follows from repeated application of Lemma 2.2.7 and Observation 2.2.4 that

for n ≥ 7, the graph Gn is a connected planar nonhamiltonian LT graph of order n

and it is clear from Figure 2.6 that it has maximum degree 6 if n ≥ 8.

M3 

v1 

v2 

v1 

v2 

v3 v1 

v2 v4 

v3 

Figure 2.6: Constructing planar nonhamiltonian LT graphs with ∆(G) = 6.

Corollary 2.1.3 says that if G is a nonhamiltonian connected LT graph of order

n, then G has at least 2n − 2 edges. Since the graph Gn defined in the proof of

Theorem 2.3.3 has 2n−2 edges, we now know that this bound is sharp. The following

corollary follows easily from the proof of Theorem 2.3.3.

Corollary 2.3.4. For each n ≥ 7, there exists a nonhamiltonian connected LT

graph of order n and size 2n− 2.

By Theorem 2.3.2, the HCP for LT graphs with maximum degree 5 is fully

solved. I now show that for maximum degree 6 the problem is NP-complete. I shall

need the following result by Akiyama, Nishizeki and Saito [4].

Theorem 2.3.5. [4] The HCP is NP-complete for 2-connected cubic planar bipartite

graphs.

Theorem 2.3.6 has been submitted for publication in [35], although the proof

presented there is somewhat more complex than the proof below.

Theorem 2.3.6. The Hamilton Cycle Problem for planar LT graphs with maximum

degree 6 is NP-complete.
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Proof. By to Theorem 2.3.5 the HCP for 2-connected cubic (i.e. 3-regular) planar

bipartite graphs is NP-complete. Now consider any 2-connected planar cubic bipar-

tite graph G′. We shall show that G′ can be transformed in polynomial time to a

planar LT graph G with ∆(G) = 6 such that G is hamiltonian if and only if G′ is

hamiltonian.

Each vertex in G′ will be represented by a triangle in G, and will be referred to

as a node in G.

The edges in G′ will be represented by a more complicated structure in G to

ensure that G is LT and also that G is hamiltonian if and only if G′ is hamiltonian.

Consider the smallest of the magwheels, M3, and the graph S in Figure 2.7. The

graph M3 and two copies of the graph S are combined by means of edge identification

to create the graph B in Figure 2.8. This graph will be used in G to represent the

edges in G′, and will be referred to as a “border”.

M3 (a) (b) S 

Figure 2.7: (a) The magwheel M3 and (b) the graph S used in the proof of Theorem

2.3.6.

B 

Figure 2.8: The border B used in the proof of Theorem 2.3.6.

Figure 2.9 shows how the graph G′ is translated into graph G. In the figure, a

vertex zi in G′ becomes a triangle Zi in G and an edge ej in G′ becomes a border

Bj in G. All the combinations of different components are done by means of edge

identification, and it follows from Theorems 2.2.2 and 2.2.6 that the resulting graph

is LT , and since G′ is planar, so is G.

It remains to show that G is hamiltonian if and only if G′ is hamiltonian. Figure

2.10 shows how a Hamilton cycle in G′ translates to a Hamilton cycle in G. The
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e1 

z1 

Z1 

z4 

z3 z2 

Z2 

Z3 

Z4 

e2 

e3 

B1 

B2 

B3 

Vertices and 

edges in G’ 

Nodes and 

borders in G 

Figure 2.9: Translating graph G′ into graph G in the proof of Theorem 2.3.6.

Graph G’ 

Graph G 

z1 

z5 

z3 

z4 

z2 

z6 

Z1 

Z6 

Z5 

Z4 

Z3 

Z2 

zi 

Zi is the corresponding 

 node in G 

V(G’) 

Figure 2.10: Translating a Hamilton cycle in G′ into a Hamilton cycle in G in the

proof of Theorem 2.3.6.

heavy lines in the figure represent edges that are part of the Hamilton cycles. Since

each node has exactly three borders incident to it, all that is needed to show that

G is not hamiltonian if G′ is not hamiltonian is to show that a Hamilton cycle in
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G can pass at most once through any given border between two nodes. Since the

magwheel M3 is nonhamiltonian, it follows that there does not exist a 2-path cover

for M3 for which the two pairs of end vertices are adjacent. Therefore there can be

at most one path passing through a border from one node to another that includes

all the vertices in the border.

Finally, I investigate the toughness of connected nonhamiltonian LT graphs.

None of the small connected nonhamiltonian LT graphs depicted in this chapter is

1-tough, but it is possible to construct such graphs. I will make use of the fact that

3-connected cubic graphs are 1-tough, and that not all such graphs are hamiltonian

[8].

Theorem 2.3.7. For any k ≥ 6 there exists a connected nonhamiltonian LT graph

Hk with ∆(Hk) = k that is 1-tough.

Proof. We use the same construction as in the proof of Theorem 2.3.6, but this

time the graph G′ is a nonhamiltonian 3-connected cubic graph. To see that the

resulting graph G is 1-tough, we note that since G′ is 1-tough, removing vertices

only from the nodes of G does not result in more components than vertices removed

(the nodes are cliques). The magwheel M3 used to construct the borders in G is

not 1-tough: if the three vertices of degree 5 (labeled say v1, v2, v3) are removed, the

result is a graph consisting of four isolated vertices. If v1, v2, v3 are removed from a

border in G, the resulting graph contains two isolated vertices, and the border no

longer connects the two nodes incident to it in G. We will now proceed to remove

the vertices in the position of v1, v2, v3 from borders in G. Let Gm be the graph

Gm−1 − {vm,1, vm,2, vm,3} − {um,1, um,2}, m ≥ 1, where m is the number of borders

that have been broken in this way, vm,1, vm,2, vm,3 are the vertices in border m in the

same relative position as v1, v2, v3 that have been removed and um,1 and um,2 are

the two vertices that have been isolated by the removal of vm,1, vm,2, vm,3 (note that

G0 = G). Removing an edge in any graph increases the number of components by at

most one, so removing the vertices vm,1, vm,2, vm,3 from a border in Gm−1 increases

the number of components by at most 3 (um,1, um,2 and possibly the number of

components of Gm increases by one). Since G′ is 3-connected, at least 3 borders in
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G have to be broken before Gm is disconnected. It follows that after two borders

have been broken there are 4 isolated vertices and G2 is still connected, and after m

borders have been broken (by removing 3m vertices), the number of components in

the resulting graph is at most 3 + 2 + 3 + 3 + · · · = 2 + 3(m− 1) = 3m− 1 < 3m and

therefore G is 1-tough. To construct the graph Hk, where k ≥ 7, simply connect G

to a copy of Kk−4 using edge identification on one of the edges that is incident to a

vertex of degree 2 in a border in G.

2.4 Traceability of Locally Traceable Graphs

The results in this section have been published in [34].

The first property of a connected nontraceable LT graph G I will investigate, is

a lower bound for ∆(G).

Theorem 2.4.1. If G is a connected nontraceable LT graph, then ∆(G) ≥ 6, and

this bound is sharp.

Proof. Since the graphs M3, M4 and M5 in Figure 2.4 are traceable, it follows from

Theorem 2.3.2 that ∆(G) ≥ 6 (a fully cycle extendable graph is hamiltonian, and

therefore traceable). Four copies of the graph M3 can be combined using edge

identification to create the graph in Figure 2.11 with maximum degree 6. It is easy

to see that this graph is nontraceable. Hence the bound is sharp.

Figure 2.11: A connected nontraceable LT graph with maximum degree 6.

Next I answer Question 1 posed by Pareek and Skupień [27].
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Theorem 2.4.2. If G is a connected nontraceable LT graph, then n(G) ≥ 10.

Proof. By Theorem 2.4.1, G has a vertex w of degree k at least 6. Let v1v2 . . . vk be

a Hamilton path of 〈N(w)〉, and let X = 〈V (G)−N [w]〉.

We make the following observations:

(i) 〈N [w]〉 is traceable from vi to vi+1 (indices taken modulo k).

(ii) 〈N [w]〉 is traceable from v1 and vk to any vertex in N [w].

(iii) Since 〈N [w]〉 is hamiltonian and G is nontraceable and LT , n(X) ≥ 2.

(iv) Each component of X has at least two neighbours in N(w).

(v) If comp(X) ≥ 2, then X has at least three neighbours in N(w).

Suppose n(G) < 10. Then it follows from Theorem 2.4.1 and (iii) above that

∆(G) = 6, n(X) = 2 and n(G) = 9. Let V (X) = {x1, x2}. Since G is nontraceable,

x1 and x2 are nonadjacent. Then by (ii) and (iv), no vertex in X can be adjacent to

either v1 or v6. If x1, say, is adjacent to both vi and vi+1 (indices modulo 6), then

G− x2 is hamiltonian, and therefore G is traceable. If x1 is adjacent to vi and x2 is

adjacent to vi+1 (indices modulo 6), then by (i) G is traceable. Hence by (iv) and

(v) we have a contradiction.

A computer search of graphs of order 10 resulted in the 6 nontraceable LT

graphs shown in Figure 2.12. The search was done by constructing all possible

graphs of order 10 with maximum degree of either 6 or 7. The graphs were then

tested for local traceability and traceability. Finally, graphs that were isomorphic

to each other were eliminated from the list of graphs that were found. Since the

search space is relatively small, it was feasible to do the search in Visual Basic in

MicroSoft Excel. Note that all the graphs in Figure 2.12 have maximum degree 7.

It is reasonably straightforward, although tedious, to prove analytically that every

connected nontraceable LT graph of order 10 has maximum degree 7.

Theorem 2.4.3. For any k ≥ 10 there exists a connected planar nontraceable LT

graph G that has order k and ∆(G) = 7.

Proof. Let G0 be the graph LT10A, depicted in Figure 2.12 and redrawn as the first

graph in Figure 2.13. For each i ≥ 1, let Gi be the graph obtained by combining

Gi−1 with a K3 by means of edge identification, starting with the edge v1v2, and

after that each time using the edge between the vertices of degree two and three of
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LT10A LT10B LT10C 

LT10F LT10E LT10D 

Figure 2.12: The nontraceable LT graphs of order 10.
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Figure 2.13: Constructing nontraceable LT graphs with ∆(G) = 7.

the last added triangle, as shown in Figure 2.13. It follows from repeated application

of Observation 2.2.4, that for k ≥ 10, the graph Gk−10 is a connected planar non-

traceable LT graph of order k and it is clear from Figure 2.13 that it has maximum

degree 7.

Note that the same procedure can be implemented using the graph in Figure

2.11 to create planar nontraceable LT graphs of any order greater than or equal to

22 with maximum degree 6.
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Locally Hamiltonian Graphs

3.1 Introduction

The notion of local hamiltonicity was introduced by Skupień [30] in 1965. He ob-

served that any triangulation of a closed surface is LH. In particular, triangulations

of the plane (maximal planar graphs) are LH. He also proved the following useful

result.

Theorem 3.1.1. [29] Suppose G is a connected LH graph of order n ≥ 3. Then

|E(G)| ≥ 3n− 6. Moreover, |E(G)| = 3n− 6 if and only if G is a maximal planar

graph.

The following easy lemma was pointed out by Pareek and Skupień [27]:

Lemma 3.1.2. If G is a connected LH graph of order n that is nonhamiltonian,

then ∆(G) ≤ n− 3.

In 1975 Goldner and Harary showed that the Goldner-Harary graph is the small-

est maximal planar graph (and therefore the smallest connected planar LH graph)

that is nonhamiltonian [18]. The Goldner-Harary graph has order 11 and size 27,

and is shown in Figure 3.5. In 1983 Pareek and Skupień [27] extended this result to

LH graphs:

Theorem 3.1.3. [27] The smallest connected, nonhamiltonian LH graph has order

11.

It follows from the next result by Chartrand and Pippert [11] that connected

LH graphs are 3-connected.
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Theorem 3.1.4. [11] If a graph G is locally n-connected, n ≥ 1, then every compo-

nent of G is (n+ 1)-connected.

The next result is fairly obvious.

Lemma 3.1.5. Let G be an LH graph and let v ∈ V (G). Then α(〈N(v)〉) ≤ d(v)/2.

There is a relationship between 3-trees and LH graphs similar to the one between

2-trees and LT graphs. Again, Markenzon et al. proved the relevant result:

Theorem 3.1.6. [22] A graph G of order n ≥ 3 is a SC-3-tree if and only if it is a

chordal maximal planar graph.

Corollary 3.1.7. A connected LH graph G of order n is a SC 3-tree if and only if

G is a chordal LH graph with |E(G)| = 3n− 6.

In Section 3.2 I develop a technique called triangle identification that will be used

extensively to manipulate and construct LH graphs with certain desired properties.

In Section 3.3 I investigate the global cycle properties of LH graphs with bounded

maximum degree. The Goldner-Harary graph has maximum degree 8, and this

led Pareek to speculate that every connected LH graph with maximum degree at

most 7 is hamiltonian, and he published a proof for this [26]. However, I claim

that his proof is not valid, and I explain the reasons for my claim. Nevertheless,

it follows from Pareek’s work and Theorem 3.3.1 that every connected LH graph

with maximum degree 6 is hamiltonian. I show that for every n ≥ 11 there exist

connected nonhamiltonian LH graphs with maximum degree at most 9, but to date

I have found only finitely many with maximum degree 8. I prove that the HCP for

LH graphs with maximum degree 9 is NP-complete.

Pareek and Skupień [27] asked four questions regarding LT and LH graphs. The

first question was addressed in Chapter 2 as Question 1. The other three questions

will be addressed here:

Question 2. [27] Is 14 the smallest order of a connected nontraceable LH graph?

Question 3. [27] Does there exist a nonhamiltonian connected LH graph that is

regular?

Question 4. [27] Is K4 the only regular LH graph that is not 4-connected?
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Figure 3.1: The Goodey graph (a connected nontraceable LH graph of order 14).

Figure 3.1 depicts a connected nontraceable LH graph of order 14. It was pre-

sented in 1972 as an example of a maximal planar nontraceable graph of smallest

order by Goodey [17], who also proved that every maximal planar graph of order

less than 14 is traceable.

In Section 3.4 I answer Question 2 in the affirmative by proving that there is no

connected nontraceable LH graph of order less than 14. Using the triangle identi-

fication technique, I show that there are planar connected nontraceable LH graphs

of every order greater than 13. I also show that there exist connected nontraceable

LH graphs with minimum degree k for all k ≥ 3.

In Section 3.5 I show by construction that the answer to Question 3 is posi-

tive. The constructed graphs have connectivity 3, so this answers Question 4 in the

negative.

Entringer and MacKendrick [16] established an upper bound for f(n), the largest

integer such that every connected LH graph of order n contains a path of length

f(n). Their results imply that limn→∞ f(n)/n = 0. In Section 3.6 I show that if

p(n,∆) is the largest integer such that every connected planar LH graph of order n

with maximum degree ∆ contains a path of length p(n,∆), then limn→∞ p(n,∆)/n =

0 for ∆ ≥ 11.
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3.2 Construction techniques for LH graphs

The following procedure will be used often to construct LH graphs with certain

properties.

Construction 3.2.1. For i = 1, 2, let Gi be an LH graph that contains a triangle

Xi such that for each vertex x ∈ V (Xi), there is a Hamilton cycle of 〈N(x)〉 that

contains the edge Xi−x. Suppose V (Xi) = {ui, vi, wi}, i = 1, 2. Now create a graph

G of order n(G1)+n(G2)−3 by identifying the vertices ui, i = 1, 2 to a single vertex

u, and similarly the vertices vi, i = 1, 2 to v and wi, i = 1, 2 to w, while retaining

all the edges present in the original two graphs (see Figure 3.2). We say that G is

obtained from G1 and G2 by identifying suitable triangles.

u1 

w1 

v1 

G1 

w2 

v2 

u2 

G2 G 

u 

w 

v 

Figure 3.2: The triangle identification procedure.

Our next result shows that certain properties are retained when two graphs are

combined by means of triangle identification.

Lemma 3.2.2. Let G1 and G2 be two LH graphs, and let G be a graph obtained

from G1 and G2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G1 and G2 are planar, then so is G.

(c) If G is hamiltonian, so are both G1 and G2.

(d) If G is traceable, so are both G1 and G2.

Proof. We use the notation defined in Construction 3.2.1.

(a) Let X be the triangle of G formed by identifying the vertices of X1 and

X2 in Construction 3.2.1. Observe that if y ∈ V (G1 −X1), then NG(y) = NG1(y),

except for a possible label change of vertices in NG1(y)∩V (X1) to the corresponding
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vertices in V (X). Hence if y ∈ V (G1−X1), then 〈NG(y)〉 is hamiltonian. The same

is true for y ∈ V (G2 − X2). Now suppose y ∈ V (X), say y = u. Let v1Q1w1v1

and w2Q2v2w2 be Hamilton cycles of 〈NG1(u1)〉 and 〈NG2(u2)〉 respectively. Then

vQ1wQ2v is a Hamilton cycle of 〈NG(u)〉. Using a similar argument, we can also

find Hamilton cycles for 〈NG(v)〉 and 〈NG(w)〉.

(b) First we show that a separating triangle (a separating triangle is a triangle

that does not border a face in a plane representation of the graph) is not suitable

for use in triangle identification. Let v1, v2 and v3 be the vertices of a separating

triangle in G1. Since LH graphs are 3-connected, each vertex in the separating

triangle has neighbours both inside the triangle and outside the triangle. It follows

that in 〈N(v1)〉 the edge v2v3 is a cut edge and is therefore not part of a Hamilton

cycle in 〈N(v1)〉. Therefore the triangle is not suitable for triangle identification.

Let X1 and X2 be the respective triangles of G1 and G2 that were used in the

triangle identification procedure of Construction 3.2.1 to form the triangle X of G.

Since G1 and G2 are planar, G1 can be drawn such that the edges of X1 border the

outer face of G1, and G2 can be drawn such that the edges of X2 border an inner

face of G2 in a plane representation. The triangle identification procedure then

essentially draws G1 − X1 inside X and G2 − X2 outside X. Hence the resulting

graph G is planar.

(c) First note that since {u, v, w} is a cutset, it follows that no Hamilton cycle

in G includes more than one edge between vertices in {u, v, w}. Figure 3.3 shows

the only possible patterns that a Hamilton cycle in G can follow (the Hamilton

cycle can include either one edge or no edges in 〈{u, v, w}〉). It follows that if G is

hamiltonian, then so are both G1 and G2.

(d) Now suppose G is traceable. Since only vertices in V (X) have neighbours

in both G1 and G2, Figure 3.4 shows the possible patterns that a Hamilton path in

G can follow. The Hamilton path in Figure 3.4(a) uses two edges of X, the ones in

Figure 3.4(b)-(d) use only one edge of X and the ones in Figure 3.4(e)-(i) do not use

any edge of X. In each case it is easily seen that each of G1 and G2 has a Hamilton

path.
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Figure 3.3: The possible Hamilton cycles through G.
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Figure 3.4: The possible Hamilton paths through G.

Note that it is possible to create a nonhamiltonian LH graph by using triangle

identification to combine two hamiltonian LH graphs. In fact, it is possible to

construct the Goldner-Harary graph using triangle identification and multiple copies

of the graph K4.

We will also need the following procedure, called triangle identification within

an LH graph.

Construction 3.2.3. Let G be an LH graph that contains disjoint triangles X1 and

X2 such that N(X1)∩N(X2) = ∅ and for each x ∈ N(Xi) there is a Hamilton cycle
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of 〈N(x)〉 that contains the edge Xi − x, i = 1, 2. Let V (Xi) = {ui, vi, wi}, i = 1, 2.

Now create a graph G′ of order n(G) − 3 from G by identifying ui, i = 1, 2 to a

single vertex u, and similarly the vertices vi, i = 1, 2 to v and wi, i = 1, 2 to w,

while retaining all the edges present in the original graph. We say that G′ is obtained

from G by identifying suitable triangles within G.

Lemma 3.2.4. If G′ is a graph obtained from an LH graph G by identifying two

suitable triangles within G, then G′ is LH.

Proof. Let X1 and X2 be two suitable triangles in G. We use the same notation as

in Construction 3.2.3. Note that the neighbourhood of a vertex z ∈ V (G)−V (X1)−

V (X2) is not changed by the construction (except for possible label changes, e.g.,

from ui, i = 1, 2 to u), because N(X1) ∩ N(X2) = ∅. Therefore, in G′ only the

neighbourhoods of u, v, w need to be considered. Let Ci be a Hamilton cycle of

〈NG(ui)〉 containing the edge viwi, i = 1, 2. Then in G′, the cycles C1 and C2 have

only the edge vw in common, since NG(u1) ∩ NG(u2) = ∅. Hence C1 − vw and

C2 − vw can be combined to form a Hamilton cycle of 〈NG′(u)〉. Similarly, we can

prove that 〈NG′(v)〉 and 〈NG′(w)〉 are hamiltonian. Hence G′ is LH.

The final result in this section will be used in Section 3.6.

Lemma 3.2.5. In an LH graph G, any vertex of degree 3 can be used three times

in triangle identification, once in combination with each distinct subset of two of its

three neighbours.

Proof. Let v1 ∈ V (G) such that N(v1) = {v2, v3, v4} and note that 〈N [v1]〉 ∼= K4.

Since d(v1) = 3, each triangle 〈N [v1]− vi〉, i = 2, 3, 4, is suitable for triangle identi-

fication. There are paths P2, P3 and P4 in G such that the following are Hamilton

cycles of 〈NG(vi)〉, i = 1, 2, 3, 4:

In 〈NG(v1)〉: v2v3v4v2

In 〈NG(v2)〉: v3v1v4P2v3

In 〈NG(v3)〉: v2v1v4P3v2

In 〈NG(v4)〉: v2v1v3P4v2.

Let G1 be an LH graph with a suitable triangle X = 〈{x1, x2, x3}〉. For each

i = 1, 2, 3, let Qi be the path in the Hamilton cycle of 〈NG1(xi)〉 between the end
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vertices of the edge X − xi. Now use triangle identification to combine G with G1

to form the graph H1 by identifying the triangle 〈{v1, v2, v3}〉〉 with the triangle

〈{x1, x2, x3}〉. Let the identified vertices retain the labels v1, v2, v3. By Lemma 3.2.2

(a), H1 is LH and the following are Hamilton cycles of 〈NH1(vi)〉, i = 1, 2, 3, 4:

In 〈NH1(v1)〉: CH1,v1 = v2Q1v3v4v2

In 〈NH1(v2)〉: CH1,v2 = v3Q2v1v4P2v3

In 〈NH1(v3)〉: CH1,v3 = v2Q3v1v4P3v2

In 〈NH1(v4)〉: CH1,v4 = v2v1v3P4v2.

The triangle 〈{v1, v2, v4}〉 in H1 is now suitable for triangle identification, since

v2v4, v1v4, v1v2 are edges in CH1,v1 , CH1,v2 , CH1,v4 respectively.

Next, let G2 be an LH graph with a suitable triangle Y = 〈{y1, y2, y4}〉. For

i = 1, 2, 4, let Ri be the path on the Hamilton cycle of 〈NG2(yi)〉 between the end

vertices of the edge Y −yi. Now use triangle identification to combine H1 with G2 to

form the graph H2 by identifying the triangles 〈{v1, v2, v4}〉 and 〈{y1, y2, y4}〉. Let

the identified vertices retain the lables v1, v2, v4. By Lemma 3.2.2 (a), H2 is LH and

the following are Hamilton cycles of 〈NH2(vi)〉, i = 1, 2, 3, 4:

In 〈NH2(v1)〉: CH2,v1 = v2Q1v3v4R1v2

In 〈NH2(v2)〉: CH2,v2 = v3Q2v1R2v4P2v3

In 〈NH2(v3)〉: CH2,v3 = v2Q3v1v4P3v2

In 〈NH2(v4)〉: CH2,v4 = v2R4v1v3P4v2.

Since v3v4, v1v4 and v1v3 are edges in CH2,v4 , CH2,v3 , CH2,v4 , respectively, the

triangle 〈{v1, v3, v4, }〉 in H2 is now suitable for triangle identification, so a third

triangle identification, using this triangle, may be performed.

Remark 3.2.6. A given triangle may not be used more than once in triangle iden-

tification.

To see that a triangle with vertices x1, x2 and x3 in an LH graph G1 can only be

used once in triangle identification to combine G1 with an LH graph G2, note that

before triangle identification the edge x2x3 is part of a Hamilton cycle in 〈NG1(x1)〉.

After triangle identification, the edge x2x3 is replaced in the Hamilton cycle in

〈NG(x1)〉 by a path with vertices that originated from G2. The same constraint

does not apply to vertices.
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3.3 Global Cycle Properties of Locally Hamilto-

nian Graphs with Bounded Maximum Degree

A computer search for order 11 LH graphs found the four graphs in Figure 3.5.

Graph G11A is the Goldner-Harary graph and graph G11B was first found by one

of my supervisors (Frick). Note that G11A is a maximal planar graph and has size

27, while the other three graphs have size 30 and are therefore not planar. Also note

that all four graphs have maximum degree 8.

v10 

v9 

v2 

v1 

v11 

v6 

v5 v7 

v8 v4 

v3 

G11D G11C 

G11B G11A 

Figure 3.5: Nonhamiltonian LH graphs of order 11.

In 1983 Pareek [26] published a paper claiming that every connected LH graph

with maximum degree less than 8 is hamiltonian. However, the proof in his paper

omits several special cases, and some of the claims that he makes on which he bases

further results are false.

Pareek’s proof will not be set out in detail. Rather, I will focus on the main

reasons why I believe it is not valid (this discussion has also been submitted for

publication in [35]). Pareek considers a longest cycle C = v1v2 . . . vtv1 in an LH

graph G with ∆(G) ≤ 7. He shows that if G is not hamiltonian, then C contains

a vertex v1 of degree at least 7 that has 6 neighbours on C and one neighbour x in

G− V (C). Let N(v1) = {x, v2, vi, vj, vk, vl, vt}. Since 〈N(v1)〉 is hamiltonian, x has
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two neighbours in N(v1), say vi and vk. It suffices to consider the following three

cases (Figure 3.6). The possibility that a graph may belong to both Case 1 and

Case 2 is not explicitly considered, but does not affect the logic of the argument.

Case 1. vk+1 ∈ N(v1).

Case 2. vk−1 ∈ N(v1).

Case 3. N(v1) ∩ {vi−1, vi+1, vk−1, vk+1} = ∅.

Since 〈N(vk)〉 is hamiltonian, vk and x have a common neighbour vp 6= v1 on C.

I agree up to this point. But then Pareek claims that Case 3 converts to either

Case 1 or Case 2 and I do not agree with that. Pareek argues that in Case 3, the

vi 

x 

v1 

vk 

(Case 1) 

vk+1 

vt v2 

vi 

x 

v1 

vk 

(Case 2) 

vk-1 

vt v2 

vi 
x 

v1 

vk 

(Case 3) 

vt v2 

Figure 3.6: The three cases used in Pareek’s proof.

fact that the neighbourhoods of v1, vi, vk, vj, vl and vp induce hamiltonian graphs

implies that dC(vp) = 6 and that vp has a neighbour in {vk−1, vk+1}. By relabelling

the vertices so that vp becomes v1, it would then follow that this case converts to

either Case 1 or Case 2. However, Figure 3.7 (a) shows an example of such a situation

where the neighbourhoods of v1, vi, vk, vj, vl and vp induce hamiltonian graphs, but

neither vk nor vi has consecutive neighbours on C. This case does therefore not

convert to Case 1 or Case 2. (I have illustrated the case where vp = vi, as this

leads to the simplest example, but even if vp and vi are distinct, the same kind of

counterexample is possible.)

The next step in Pareek’s proof is to show that if Case 1 occurs, then so does Case

2. I do not agree with this either. The graph in Figure 3.7 (b) is a counterexample:

the neighbourhoods of v1, vi and vk induce hamiltonian graphs, but Case 2 does

not occur (it is also possible to find Hamilton cycles in the graphs induced by the

neighbourhoods of the unlabeled vertices in the figure, but for the sake of clarity
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vi 

x 

v1 

vl 

(a) 

vj 

(b) 

vk vi 

x 

v1 

vk 

vt vt v2 v2 

Figure 3.7: Counterexamples to Pareek’s Claims.

these are not shown).

Pareek’s final step is to show that Case 2 is not possible. However, he omits some

of the possible subcases of Case 2, but more seriously, the proof fails if k < p < t.

I therefore regard the problem as to whether there exists a nonhamiltonian con-

nected LH graph with maximum degree 7 as unsolved. Nevertheless, it follows from

the correct part of Pareek’s proof that every connected LH graph with maximum

degree at least 6 is hamiltonian. Moreover, at the mentioned Salt Rock workshop,

we adapted the technique that Pareek had used to prove the following (this was

published as [3]).

Theorem 3.3.1. [3] Let G be a connected LH graph with n(G) ≥ 3 and ∆(G) ≤ 6.

Then G is fully cycle extendable.

Proof. Since G is locally hamiltonian, every vertex lies on a 3-cycle. It suffices thus

to show that every cycle is extendable. Assume, to the contrary, that there is a

cycle C = v0v1 . . . vt−1v0 of length t < n(G) that is not extendable. Since G is

connected, some vertex of C, say v0, has an off-cycle neighbour x. Since 〈N(v0)〉

contains a Hamilton cycle Hv0 , it contains two x−C paths that are disjoint except

for x. Let vj and vk be the first cycle vertices on the respective paths where j < k.

Then there are off-cycle vertices xj, xk ∈ N(v0) (at least one of which is x, since

deg v0 ≤ 6.) such that xj is adjacent to vj and xk is adjacent to vk. By Lemma

2.3.1(1), j, k 6∈ {1, t− 1}.
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First, suppose v1, vt−1, vj, vk are the only neighbours of v0 on C. Then vkvt−1v1vj

or vkv1vt−1vj is a subpath of Hv0 . Assume the former. (The latter case can be

handled similary.) By Lemma 2.3.1(3), j 6= 2 and k 6= t− 2.

It follows from Lemma 2.3.1(1) and (3) that Ik = {xk, vk−1, vk+1} is an indepen-

dent set in 〈N(vk)〉. Hence, since 〈N(vk)〉 has a Hamilton cycle, |N(vk)| = 6 and

every vertex in N(vk)− Ik is adjacent to two vertices in Ik. But then v0 is adjacent

to at least one of vk−1 and vk+1, contradicting Lemma 2.3.1(3). Hence v0 has exactly

five neighbours on C. In fact, this proves that every attachment vertex of C has

exactly 5 cycle neighbours and one off-cycle neighbour.

Thus we may assume that N(v0) = {x, v1, vt−1, vj, vk, vq}, where j < k and vjxvk

is a path on a Hamilton cycle Hv0 of 〈N(v0)〉 and vq is another cycle neighbour

of v0. Thus we may assume without loss of generality that Hv0 contains the edge

vjv1 or vjvt−1. Then it follows from Lemma 2.3.1(3) that vj−1vj+1 6∈ E(G). Hence

Ij = {x, vj−1, vj+1} is an independent set in 〈N(vj)〉. Hence every vertex inN(vj)−Ij
is adjacent to at least two vertices in Ij. But by Lemma 2.3.1(2), vt−1vj−1 /∈ E(G) so

vt−1 /∈ N(vj). Hence v1 ∈ N(vj). But since v1vj+1 /∈ E(G) it follows that v1 = vj−1,

i.e. j = 2.

By Lemma 2.3.1(3), vt−1v1 /∈ E(G), so vk is adjacent to v1 or vt−1. Thus a

similar argument as above shows that k = t − 2. Since the path vt−2xv2 lies on

Hv0 , the fact that vt−1v1 /∈ E(G) implies that v1vqvt−1 also lies on Hv0 . Hence

3 < q < t−3 by Lemma 2.3.1(2). We observe that vq−1vq+1 6∈ E(G), since otherwise,

vq−1vq+1

−→
C vt−1vqv1v0xv2

−→
C vq−1 is a (t + 1)-cycle that contains the vertices of C, a

contradiction. But by Lemma 2.3.1(4), neither vq−1 nor vq+1 is adjacent to either

vt−1 or v1. Hence {v1, vt−1, vq−1, vq+1} is an independent set in 〈N(vq)〉. But, since

|N(vq)| ≤ 6 it follows that 〈N(vq)〉 is nonhamiltonian. This contradiction produces

the desired result.

Theorem 3.3.1 extends the result of Altshuler [6] that any 6-regular triangulation

of the torus is hamiltonian.

In order to prove the next theorem we will need a planar LH graph of any order

n ≥ 4 with maximum degree at most 6 that contains a triangle with vertices u1, u2

and u3 of degrees 3, 4 and 5 respectively. Observation 3.3.2 shows how to construct

such a graph.

48



Local Properties of Graphs

Observation 3.3.2. There exists a planar LH graph G of order n for every n ≥ 4

such that ∆(G) ≤ 6 and G contains a triangle whose vertices have degrees 3, 4 and

5.

Proof. Such a graph can be constructed in the following manner: start with K4

drawn in a plane representation. Attach an additional vertex to the three outer

vertices in K4 to create graph G5. Keep repeating this procedure (add an additional

vertex by connecting it to the three outer vertices in Gi). The procedure essentially

starts off with K4, which is LH, and in each step uses triangle identification to

combine Gi with K4, so it is clear that the new graph Gi+1 is also LH. Moreover,

by drawing the graph in each step so that edges between the last three vertices

added border the outer plane, the maximum degree can be limited to six, and the

last three vertices added have degrees 5, 4 and 3, respectively. See Figure 3.8.

K4 G5 G7 G6 

G11 

Figure 3.8: Constructing a planar LH graph with maximum degree 6.

Theorem 3.3.3. For every n ≥ 11 there exists a connected planar nonhamiltonian

LH graph G with ∆(G) ≤ 9.

Proof. For any k ≥ 4, Let Hk be a planar LH graph of order k with ∆(Hk) ≤ 6

such that Hk contains a triangle with vertices u1, u2 and u3 of degrees 3, 4 and

5 respectively. Using vertices with low degrees in triangle identification limits the

degrees of the resulting identified vertices. Now combine combine Hk with the graph

G11A in Figure 3.5 using triangle identification by identifying u1 with v1, u2 with

v2 and u3 with v3. Then the resulting graph G is a connected graph with ∆(G) = 9

and n(G) = 11 + k − 3 and, by Lemma 3.2.2 (b) and (c), G is both planar and

nonhamiltonian.
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I have found nonhamiltonian connected LH graphs with maximum degree 8 and

order 11, 13, 14, 15, and as large as 34, but I do not know whether there are infinitely

many. The following theorem shows that there are none of order 12. The proof is

long and uninteresting, and can be found in Appendix 1. The result will be needed

to prove Theorem 4.2.7.

Theorem 3.3.4. Let G be a connected nonhamiltonian LH graph of order n = 12.

Then ∆(G) = 9.

Chvátal [12] and Wigderson [36] independently proved that the Hamilton Cycle

Problem for maximal planar graphs is NP-complete. Although neither author was

interested in the minimum value of the maximum degree for which this is true, it

is straightforward to manipulate the construction Chvátal used to show that the

theorem holds for a maximum degree as low as 12. However, I shall make a further

improvement for LH graphs (that is, if we drop the requirement that the graph

be planar). A weaker version of Theorem 3.3.5 has been submitted for publication

in [35] (The Hamilton Cycle Problem for LH graphs with maximum degree 10 is

NP-complete).

Theorem 3.3.5. The Hamilton Cycle Problem for LH graphs with maximum degree

9 is NP-complete.

Proof. Starting with a cubic graph G′, we will construct a connected LH graph G

with ∆(G) = 9 such that G is hamiltonian if and only if G′ is hamiltonian.

Each vertex in G′ is replaced by a copy of a K4 graph in G, and will be referred

to as a node in G.

The edges will be replaced by a more complex structure, both to ensure local

hamiltonicity and to ensure that G is hamiltonian if and only if G′ is hamiltonian.

Consider the nonhamiltonian LH Goldner-Harary graph H in Figure 3.9 (a) and

the LH graph D in Figure 3.9 (b). We use triangle identification to combine H with

two copies of D in the following way: using the first copy of D, identify v1 and x1,

v2 and x2, and v3 and x3, and using the second copy of D, identify u1 and x1, u2

and x2, and u3 and x3. This yields the graph Fi in Figure 3.10, which is LH and

nonhamiltonian.
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v3 

v2 

v1 

u3 

u2 

u1 (a) (b) 

x3 x1 

x2 

H D 

s 

Figure 3.9: (a) The Goldner-Harary graph H and (b) the graph D used in the proof

of Theorem 3.3.5.

wi,3 

Fi 

wi,1 

wi,2 

Figure 3.10: The graph Fi used in the proof of Theorem 3.3.5.

The graphs Fi will be used to connect the nodes in G and will be referred to

as “borders”. Thus each edge in G′ will be replaced by one border. The borders

are connected to the nodes by means of triangle identification. Let the vertices in

a node in G be y1, y2, y3, y4 and let the vertices in Fi be as shown in Figure 3.10.

Since each vertex in G′ has degree three, each node in G is attached to three copies

of Fi. We identify the vertices as shown in Table 3.1. We use the graphs F1, F2 and

F3 for illustrative purposes. See Figure 3.11 (the heavy lines in G represent edges

belonging to the nodes).
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Vertex in node Vertex in Fi

y1 w1,1

y2 w1,2

y3 w1,3

y2 w2,2

y3 w2,1

y4 w2,3

y1 w3,3

y2 w3,2

y4 w3,1

Table 3.1: Vertices identified in the proof of Theorem 3.3.5.

Vertices and 

edges in G’ 

z1 

z2 

Z2 

Z3 

Z4 

Z1 

z4 

z3 

e2 e1 

e3 

F2 

F3 

F1 

Nodes and 

borders in G 

y2 

y4 y1 

y3 

Figure 3.11: Converting the graph G′ to G.

Checking the degrees of the vertices that have been identified shows that ∆(G) =

9 and by Lemmas 3.2.2 (a), 3.2.4 and 3.2.5, G is LH.

We still have to show that G is hamiltonian if and only if G′ is. Figure 3.12

shows how a Hamilton cycle in G′ translates to a Hamilton cycle in G (the heavy

lines represent paths in the Hamilton cycle).
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Graph G’ 

Graph G 

z1 

Z1 

z5 z2 

z6 z3 

z4 

zi 

Zi is the corresponding 

 node in G 

V(G’) 

Z6 

Z5 

Z3 

Z2 

Z4 

Figure 3.12: Translating a Hamilton cycle from G′ to G.

Consider a copy of H in a border of G that connects two nodes, say Z1 and Z2.

Assume that the edges between H and Z1 are incident with vertices in {u1, u2, u3},

and the edges between H and Z2 are incident with vertices in {v1, v2, v3} (as labelled

in Figure 1(a)).

Suppose C is a Hamilton cycle in G. Then S = N(s) − {v2, v3, u2, u3} (i.e. the

set of unlabelled neighbours of s in H in Figure 1 (a)) is an independent set of

cardinality four and N(S) = {v2, v3, u2, u3, s}. The intersection of C with 〈N [s]〉

is therefore a path with end vertices in {v2, v3, u2, u3}. Hence any path cover of H

contains at most one path that has one end vertex in {u1, u2, u3} and the other in

{v1, v2, v3}. Thus every Hamilton cycle in G has at most one path from Z1 to Z2

that passes through the border between them. Therefore, since each node has three
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borders incident to it, if G′ is not hamiltonian, then G is not hamiltonian.

It follows from Theorems 3.3.1 and 3.3.5 that ∆∗LH ∈ {7, 8}. I think it very un-

likely that connected nonhamiltonian LH graphs with maximum degree 7 exist, and

speculate that there are only finitely many connected nonhamiltonian LH graphs

with maximum degree 8, which would imply that ∆∗LH = 8.

Finally, a note on toughness. Chvátal raised the question of whether maximal

planar nonhamiltonian graphs can be 1-tough [24]. This was answered by Nishizeki

[24] by exhibiting such a graph of order 19 and maximum degree 15. Soon afterwards,

Dillencourt [14] and Tkáč [32] found smaller examples of such graphs (orders 15

and 13 respectively, with maximum degree 9). Tkáč also showed that 13 is the

smallest possible order for such graphs. Tkáč’s graph can be found in Figure 3.13.

It is still unknown whether a connected LH graph with maximum degree 8 can be

nonhamiltonian but 1-tough.

Figure 3.13: A 1-tough maximal planar graph of order 13 with maximum degree 9.
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3.4 Traceability of Locally Hamiltonian Graphs

The material in this section has been published in [34].

I begin this section by addressing Question 2: Is 14 the smallest order of a

connected nontraceable LH graph?

As mentioned earlier, the graph in Figure 3.1 is a connected nontraceable LH

graph of order 14. Thus it remains to prove that every LH graph of order less than

14 is traceable.

From Theorem 3.3.1 it follows that if G is a connected nonhamiltonian LH graph,

then ∆(G) ≥ 7.

Note that if w is any vertex in an LH graph, then 〈N [w]〉 contains a wheel

with centre w. The following two results concerning wheels will be used extensively

throughout the proof of our main result in this section.

Lemma 3.4.1. Let W be a wheel of order d + 1, d ≥ 3 with centre vertex w and

rim C denoted by v1 . . . vdv1. Then W has a Hamilton path between vi and vj, for

every pair i, j with 1 ≤ i < j ≤ d. Moreover every edge of C lies on some Hamilton

path between vi and vj except for the edge vivj (when j = i+ 1).

Figure 3.14 illustrates the Hamilton paths in Observation 3.4.2 for the cases (b),

(c) and (d) .

We define a k-path cover of a graph G to be a set of k disjoint paths that contain

all the vertices in G.

Observation 3.4.2. Suppose a graph G contains a wheel W with centre vertex w

and rim C, denoted by v1 . . . vdv1. Suppose G−V (W ) has a k-path cover Q1, . . . , Qk.

Let ai, bi be the end-vertices of Qi, i = 1 . . . , k. (If Qi is a singleton, then ai = bi.)

Then the following hold.

(a) If k = 1 and a1 has a neighbour in C, then G is traceable.

(b) If k = 2 and C contains a pair of distinct vertices {u1, u2} such that ui ∈ N(ai),

i = 1, 2, then G is traceable.

(c) Suppose k = 3 and C contains two distinct pairs of distinct vertices {u1, v1}

and {u2, u3} such that ui ∈ N(ai) for i = 1, 2, 3 and v1 ∈ N(b1). Then G is

traceable if the set {u1, v1, u2, u3} contains two consecutive vertices of C.
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Figure 3.14: The Hamilton paths referred to in Observation 3.4.2.

(d) Suppose k = 4 and C contains three distinct pairs of distinct vertices {u1, v1},

{u2, v2, } and {u3, u4} such that ui ∈ N(ai) for i = 1, 2, 3, 4 and vi ∈ N(bi) for

i = 1, 2. Then G is traceable if either of the following hold.

(i) The vertices u2 and v2 are the respective successors of u1 and v1 on C.

(ii) The vertices u1 and v1 are consecutive vertices of C and the set {u2, v2, u3, u4}

contains a pair of consecutive vertices of C.

Note that by “distinct pairs of distinct vertices” we mean that the two vertices

in a given pair are distinct and any two given pairs have at most one vertex in

common.

Lemma 3.4.1 implies that an LH graph of order n with maximum degree n− 2

is hamiltonian. Adding a vertex (with any number of edges incident to it) to a

hamiltonian graph results in a traceable graph. We thus get the following.

Corollary 3.4.3. If G is a connected nontraceable LH graph, then ∆(G) ≤ n− 4.
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Lemma 3.4.4. Suppose G is a connected LH graph. For any w ∈ V (G), let C =

v1v2 . . . vdv1 be a Hamilton cycle in 〈N(w)〉 and let X = G − N(w). Let S be the

union of any s components of X. Then the following hold.

(i) If for some vi ∈ N(w), vi has at least one neighbour in each component of S,

then |NC(vi) ∩NC(V (S))| ≥ s+ 1 and |NC(V (S))| ≥ s+ 2.

(ii) If s ∈ {2, 3}, then |NC(V (S))| ≥ s+ 2.

Proof. (i) Since 〈NS(vi) ∪ {w}〉 has at least s+ 1 components, and since 〈N(vi)〉

is hamiltonian, 〈N(vi)−{w}〉 has a Hamilton path P with initial and terminal

vertices on C. Since the maximal subpaths of P that intersect each component

of S are preceded and followed by vertices on C, |NC(vi)∩NC(V (S))| ≥ s+ 1,

and since vi ∈ NC(V (S)), the result follows.

(ii) Suppose |NC(V (S))| ≤ s + 1. Since G is 3-connected, each component of

S has at least 3 neighbours on C, and so, if s ∈ {2, 3}, it follows from the

pigeonhole principle that there is some vertex vi on C that has a neighbour in

each component of S. The result follows from (i).

The following observation will be used extensively in the proof of our main result

in this section.

Observation 3.4.5. If H is a connected graph of order n ≤ 5, then one of the

following holds.

(a) H is hamiltonian.

(b) H is nonhamiltonian but traceable and H has a Hamilton path Q with end-vertices

a, b such that d(a) ≤ 1, d(b) ≤ 2 if n ≤ 4 and d(a) ≤ 2 if n = 5.

(c) H is nontraceable and has a 2-path cover Q1, Q2, such that Qi has an end-vertex

ai of degree 1 for i = 1, 2, and all the end-vertices of Q1 and Q2 are independent.

(d) H = K1,4.

Figure 3.15 shows the connected nontraceable graphs of order n ≤ 5.
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Figure 3.15: The connected nontraceable graphs of order n ≤ 5.

Theorem 3.4.6. Suppose G is a connected LH graph of order n ≤ 13. Then G is

traceable.

Proof. Suppose to the contrary that G is a connected nontraceable LH graph of

n ≤ 13. Let w be a vertex in G of degree d = ∆(G), let C = v1 . . . vdv1 be a

Hamilton cycle in 〈N(w)〉 and X = G − N [w]. By Theorem 3.3.1 and Corollary

3.4.3, ∆(G) ∈ {7, 8, 9}.

Suppose ∆(G) = 9. Then |V (X)| ≤ 3. If E(X) 6= ∅, then since G is 3-connected,

it follows from Observation 3.4.2(a) and (b) that D is traceable. If E(X) = ∅, it

follows from Lemma 3.4.4(ii), that X has at least two consecutive neighbours on C.

Hence, since G is 3-connected, Observation 3.4.2(c) implies that G is traceable. We

may therefore assume ∆(G) ∈ {7, 8}.

Now let Q1, . . . , Qk be a minimum path cover of X and let ai, bi be the end-

vertices of Qi, i = 1 . . . , k. (If Q has only one vertex, then ai = bi.) Since Q1, . . . , Qk

is a minimum path cover of X, aiaj, bibj, aibj /∈ E(G) for i 6= j.

Claim 1: If vi ∈ C, then vi is adjacent to at most 2 components of X.

Proof of Claim 1: By Lemma 3.1.5, vi is adjacent to at most ∆(G)
2
−1 components

in X, and since ∆(G) ∈ {7, 8}, we need only consider the case where ∆(G) = 8

and some vi ∈ C is adjacent to exactly three components in X. Hence if k = 3

then V (X) = {a1, a2, a3} or V (X) = {a1, a2, a3, b3}, otherwise k = 4 and V (X) =

{a1, a2, a3, a4}. Without loss of generality we may assume {a1, a2, a3} ⊂ N(v1).

Since ∆(G) = 8, it follows from Lemma 3.4.4(i) that v1 has exactly 4 neighbours

on C. Since {a1, a2, a3, w} is an independent set in 〈N(v1)〉, and since 〈N(v1)〉 is

Hamiltonian, there exists an ai and aj in N(v1), ai 6= aj, such that ai ∈ N(v8) and

aj ∈ N(v2). But, since G is 3-connected, this contradicts Observation 3.4.2(c) if

k = 3 and it contradicts Observation 3.4.2(d)(ii) if k = 4.

We now consider the k-path cover Q1, ..., Qk of X. There are five cases to con-

sider.

Case k = 1.
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Since G is 3-connected, it follows from Observation 3.4.5(a) and (b) that an end-

vertex of Q1 has a neighbour on C. Hence by Observation 3.4.2, G is traceable.

Case k = 2.

Since G is 3-connected, it follows from Observation 3.4.5(a), (b) and (c) that there

are two distinct vertices u1 and u2 on C such that ui is adjacent to an end-vertex

of Qi, i = 1, 2. Hence, by Observation 3.4.2, G is traceable.

Case k = 3.

If X is a star K1,4, and x its central vertex, then α(〈N(x)〉) = 4, which contradicts

Lemma 3.1.5, since in this case ∆(G) = 7. Hence X has either 2 or 3 components

and each component of X has at most 4 vertices and at least one component is

a singleton. Thus we may assume that Q1 = {a1} and that a1 has three distinct

neighbours on C. Moreover, by Observation 3.4.5(a), (b), (c) and the fact that G is

3-connected, we may assume that either each of a2 and a3 has at least two neighbours

on C or a2 has at least three neighbours on C and a3 has at least one neighbour on

C. If a neighbour of a3 (or b3) is the successor or predecessor of a neighbour of a2

(or b2) on C, it follows from Observation 3.4.2(c) that G is traceable. Also if two

of the neighbours of a1 are consecutive on C, Observation 3.4.2(c) implies that G is

traceable.

It remains to consider the case where no neighbour of ai is a successor or prede-

cessor of a neighbour of aj (or bj) on C for i 6= j, and if ai = bi, ai has no consecutive

neighbours on C.

If ∆(G) = 7 we may therefore assume that N(a1) = {v1, v3, v5} and since 〈N(a1)〉

is hamiltonian, v1v3, v1v5, v3v5 ∈ E(G). Since the set {a2, a3} has at least four

neighbours in {v1, v3, v5}, at least one of vi, i = 1, 3, 5, is of degree 8, a contradiction.

Hence ∆(G) = 8 and n(V (X)) ≤ 4 and V (X) = {a1, a2, a3} or V (X) =

{a1, a2, a3, b3}. But now |NC(V (X))| = 4, contradicting Lemma 3.4.4(ii).

Case k = 4.

If n(X) = 4, V (X) = {a1, a2, a3, a4} and if n(X) = 5, V (X) = {a1, a2, a3, a4, b4}.

Observe also that since δ(G) ≥ 3, there are at least 12 edges between V (C) and

V (X). We make the following claims.

Claim 2: If ak is an isolated vertex in X, and if vi ∈ N(ak), then vi−1 /∈ N(ak)

and vi+1 /∈ N(ak). If n(X) = 5 and vi ∈ N(a4), then vi−1 /∈ N(b4) and vi+1 /∈ N(b4).
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Proof of Claim 2: First suppose V (X) = {a1, a2, a3, a4}.

Suppose to the contrary that {v1, v2} ⊆ N(a1). By Claim 1 and since G is 3-

connected, there are at least seven edges between the d− 2 vertices in C − {v1, v2}

and V (X)− {a1}. By Observation 3.4.2 (d)(ii), no two consecutive vertices on the

path v3v4 . . . vd have neighbours in V (X) − {a1}. Hence at most dd−2
2
e vertices on

the path v3v4 . . . vd are neighbours of X − a1. Since d ∈ {7, 8}, no more than three

such vertices exist. But then one of these vertices has at least three neighbours in

V (X), contradicting Claim 1.

Now suppose V (X) = {a1, a2, a3, a4, b4}. Note that in this case ∆(G) = 7.

If v1 ∈ N(a4) and v2 ∈ N(b4), the argument above is directly applicable. So

assume without loss of generality that {v1, v2} ⊆ N(a1). If N(a2) ∩ {v1, v2} = ∅,

then by Observation 3.4.2(d)(ii), N(a2) = {v3, v5, v7}. Hence, again by Observa-

tion 3.4.2(d)(ii), NC({a3, a4, b4}) ⊆ {v3, v5, v7}. But then each of v3, v5 and v7 has

neighbours in three components of X, contrary to Claim 1.

If {v1, v2} ⊂ N(a2), then by Claim 1 and Observation 3.4.2(d)(ii), N({a3, a4, b4}) =

{v4, v5, v6}. But since δ(G) ≥ 3, this again contradicts Claim 1. Therefore a2, and

by symmetry, a3, each has exactly one neighbour in {v1, v2}. Hence by Observa-

tion 3.4.2(d)(ii) N(a2, a3) = {v1, v2, v4, v6}. This implies that no vertex in V (C) is

adjacent to a4 or b4 contradicting the fact that G is 3-connected.

Claim 3: ∆(G) = 8 and X = {a1, a2, a3, a4}.

Proof of Claim 3: Suppose ∆(G) = 7. By Claim 1 and since each component of

X has at least three distinct neighbours in V (C), we may assume without loss of

generality that v1 has neighbours in two components of X. Suppose v1 is adjacent

to ai and aj where i, j 6= 4. Then by Claim 2, {ai, aj}∩N({v2, v7}) = ∅. If n(X) = 5

and, say j = 4, then Claim 2 implies that {ai, b4} ∩ N({v2, v7}) = ∅. By Lemma

3.4.4(i), v1 has at least three neighbours in V (C) other than v2 and v7, and since v1

is also adjacent to w, d(v1) ≥ 8, a contradiction.

Claim 4: If vi ∈ N(a1) ∩ N(a2), then there exists a vj 6= vi such that vj ∈

N(a1) ∩N(a2).

Proof of Claim 4: Suppose {a1, a2} = NX(v1). By Claim 2, {v2, v8} ∩ {N(a1) ∪

N(a2)} = ∅. By Lemma 3.4.4(i) and since ∆(G) = 8, v1 has exactly three neighbours

other than v2 and v8 in V (C). Since 〈N(v1)〉 is hamiltonian, one of these three
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neighbours is adjacent to both a1 and a2.

Claim 5: d(ai) = 3 for all ai ∈ X.

Proof of Claim 5: Suppose to the contrary that d(a1) > 3. Then by Claim 2,

d(a1) = 4 and we may assume without loss of generality that N(a1) = {v1, v3, v5, v7}.

By Observation 3.4.2(d)(i) at most one of {v2, v4, v6, v8} is in N(ai), ai 6= a1. Since

δ(G) ≥ 3 this implies that each ai 6= a1 is adjacent to at least two vertices in N(a1),

contradicting Claim 1.

We can now proceed with the main proof of the theorem.

By Claim 5 there are 12 edges between V (C) and V (X). Hence by Claim 1 we

may assume without loss of generality that NX(v1) = {a1, a2}. By Claims 2 and

5 we may also assume that either N(a1) = {v1, v3, v5} or N(a1) = {v1, v3, v6}. By

Claim 4, |N(a1) ∩N(a2)| ≥ 2. Hence, by Claim 1 we may assume that for at least

one of a3 and a4, say a4 has no neighbour in N(a1). Furthermore, by Observation

3.4.2(d)(i), no two neighbours of a4 are both successors (or both predecessors) of

neighbours of a1 on C. Also, by Claim 2, no two neighbours of a4 are consecutive

vertices on C. But then d(a4) < 3, a contradiction.

Case k = 5.

In this case X = {a1, a2, a3, a4, a5} and ∆(G) = 7. Since d(ai) ≥ 3 there are at least

15 edges between V (C) and V (X). But then some vi on C is adjacent to at least

three components in X contradicting Claim 1.

I conclude that 14 is indeed the smallest order of a connected, nontraceable LH

graph.

We now turn our attention to constructing nontraceable LH graphs with various

properties. Triangle identification will be used repeatedly. Note that the Goodey

graph (the connected, nontraceable LH graph of order 14 in Figure 3.1) has maxi-

mum degree 8. Figure 3.16 shows a different depiction of the Goodey graph G. Note

that d(v1) = 8 and 〈G−N(v1)〉 ∼= K1,4.

Theorem 3.4.7. There exists a connected planar nontraceable LH graph of order

n with ∆(G) ≤ 10 for every n ≥ 14.

Proof. First note that the nontraceable LH graph of order 14 in Figure 3.16 is

planar. This is the same graph as shown in Figure 3.1 redrawn in a more conve-

nient representation. Also note the three vertices of the LH graphs constructed in
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Observation 3.3.2 that border the outer plane are suitable for use in triangle identifi-

cation. Label these three vertices u, v and w having degrees 3,4 and 5, respectively.

By identifying u with v5 in Figure 3.16, v with v2, and w with u5, we get a planar

nontraceable LH graph G with maximum degree of 10. If we start with an LH

graph H from Observation 3.3.2 of order k, k ≥ 4, then n(G) = 11 + k.

v6 
u2 

v2 

u1 

v1 
u4 

v4 u3 

v3 

v5 

u8 

u7 

u6 

u5 

Figure 3.16: The order 14 nontraceable LH graph shown in Section 1 in a different

representation. Note that d(v1) = 8 and 〈G−N(v1)〉 ∼= K1,4.

Theorem 3.4.8. For any integer k ≥ 3 there exists a nontraceable LH graph G

with δ(G) = k.

Proof. To construct such a graph we start with the order 14 nontraceable LH graph

H shown in Figure 3.16. Since complete graphs of order greater than 3 are LH, we

can construct the graph G by combining multiple copies of Kk+1 with G by means

of triangle identification in such a way that each vertex of H is used at least once

in a triangle identification procedure. Since a triangle can be used at most once in

triangle identification (Remark 3.2.6), we must use a new triangle for each step.

Specifically, the triangles formed by edges between the vertices in the follow-

ing sets in V (H) can be used: {v1, u1, v2}, {v1, u2, v3}, {v1, u3, v4}, {v1, u4, v5},

{v2, v3, u6}, {v3, v4, u7}, {v5, v6, u8}, and {v5, v2, u5}. This results in the graph in

Figure 3.17 (in this case K5 was used for the triangle identification, so the minimum

degree is 4).

62



Local Properties of Graphs

Figure 3.17: A nontraceable LH graph with minimum degree 4.

3.5 Regular connected nonhamiltonian LH graphs

The material in this section has been submitted for publication in [35].

Regular connected LH graphs have not yet received much attention in the lit-

erature, except in terms of 6-regular triangulations of the torus [6, 31]. The hamil-

tonicity of such graphs is readily implied by Theorem 3.3.1.

Questions 3 and 4 by Pareek and Skupień [27] regarding regular LH graphs

mentioned in Section 1 are both answered by the following theorem.

Theorem 3.5.1. For every r ≥ 11, there exists a nonhamiltonian LH r-regular

graph with connectivity 3.

Proof. To construct an 11-regular connected, nonhamiltonian LH graph R11 we

start with the Goldner-Harary graph G11 shown in Figure 3.18 with the vertices

labeled as shown. We then use triangle identification to combine G11 with other

LH graphs that have the required degree sequences so that the resulting graph is

11-regular. These graphs are shown as graphs H11A and H11B in Figure 3.19 and

were constructed by starting with the triangle 〈{w1, w2, w3}〉 and then adding edges

linking it to a K12 or K13 as shown. To limit the degrees of the vertices making up

the K12 or K13 subgraphs to 11, edges were removed between some of these vertices,

as indicated in Figure 3.19. It is routine to confirm that these graphs are LH and

that the triangle 〈{w1, w2, w3}〉 in each of these graphs is suitable for use in triangle

identification. In particular we create the graph R11 by combining G11 with five

copies of H11A and one copy of H11B, each time identifying the vertices w1, w2, w3

with appropriate vertices in G11. Note that in each step the degrees of the vertices

in G11 that are identified with w1, w2, w3 of H11A increase by 1, 2, 8, respectively,
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Vertices in G11 Second graph

v4, v2, v6 H11A

v5, v1, v8 H11A

v3, v4, v9 H11A

v1, v4, v10 H11A

v2, v5, v11 H11A

v5, v3, v7 H11B

Table 3.2: Details of 11-regular construction for Theorem 3.5.1.

v10 

v6 

v4 

v3 

v11 

v5 

v8 v7 

v2 v1 

v9 

G11 v10 

v6 

v4 

v3 

v11 

v5 

v8 v7 

v2 v1 

v9 

G12 

v12 

Figure 3.18: The graphs G11 and G12 used in to construct regular nonhamiltonian

LH graphs.

while the degrees of those that are identified with w1, w2, w3 of H11B increase by

2, 2, 8, respectively. Table 3.2 provides the details of the construction. The first

column indicates the first, second and third vertices of the triangle in G11 that

are identified, respectively, with the vertices w1, w2, w3 of the graph in the second

column.

The resulting graph is 11-regular and by Lemma 3.2.2 is connected, nonhamil-

tonian, and LH. Since it was obtained by means of triangle identification, it has

connectivity 3. This technique can easily be extended to create r-regular, connected,

nonhamiltonian LH graphs for odd values of r greater than 11. Due to problems

with vertex degree parity, the technique does not work for even values of r when

starting with graph G11. For even values of r greater than or equal to 12 we can

use graph G12 in Figure 3.18. To create a 12-regular, connected, nonhamiltonian

LH graph R12 we combine G12 with two copies of H12A, three copies of H12B and

one copy of H12C. The details are given in Figure 3.19 and Table 3.3.
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u10 

u1 u2 u3 u4 u8 u7 u6 u5 

u12 u11 u9 

w1 

w3 w2 

H11B 

Edges removed:  u1u4  u1u5  u1u6  u2u3  u2u7  u3u8 

K12 
u10 

u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 u9 

w1 

w3 w2 

H11A 

Edges removed:  u1u3  u1u4  u1u5  u1u13  u2u6  u2u7 

u2u8  u3u4  u5u6  u7u8  u9u10  u11u12 

K13 

u10 

u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 

u9 

w1 

w3 w2 

H12A 

Edges removed:  u1u4  u1u5  u1u6  u2u3  u2u7  u8u9 

K13 

u10 

u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 

u9 

w1 

w3 w2 

H12C 

Edges removed:  u1u2  u1u8  u1u9  u2u7  u3u4  u3u6 

u4u5  u5u6  u7u8   

K13 

u10 

u1 u2 u3 u4 u8 u7 u6 u5 

u13 u12 u11 

u9 

w1 

w3 w2 

H12B 

Edges removed:  u1u4  u1u5  u1u6  u2u3  u2u7   

u2u8  u3u9 

K13 

Figure 3.19: The graphs used to construct regular nonhamiltonian LH graphs in

combination with G11 and G12.
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Vertices in G12 Name of second graph

v3, v5, v7 H12A

v2, v5, v11 H12A

v5, v3, v8 H12B

v4, v2, v6 H12B

v4, v1, v9 H12B

v4, v10, v12 H12C

Table 3.3: Details of 12-regular construction for Theorem 3.5.1.

3.6 Longest paths in LH graphs

The material in this section has been submitted for publication in [35].

The title of this section comes from a paper by Entringer and MacKendrick [16].

For n ≥ 4, they define f(n) to be the largest integer such that every connected LH

graph on n vertices contains a path of length f(n). They established the following

upper bound for f(n).

Theorem 3.6.1. [16] f(n) ≤ 24
√
n/3 + 4 for n ≥ 4.

Although Entringer and MacKendrick did not explicitly state it, the following

corollary is an obvious implication of Theorem 3.6.1.

Corollary 3.6.2. limn→∞
f(n)
n

= 0.

The LH graphs constructed by Entringer and MacKendrick to provide the bound

in Theorem 6.1 are nonplanar and there is no restriction on their maximum degree.

However, it is possible to prove a result equivalent to Corollary 3.6.2 for planar

graphs with bounded maximum degree. We define p(n,∆) to be the largest integer

such that every connected planar LH graph of order n with maximum degree ∆

contains a path of length p(n,∆). I now prove the following result, which is stronger

than Corollary 3.6.2.

Theorem 3.6.3. limn→∞
p(n,∆)

n
= 0 for every ∆ ≥ 11.

Proof. Consider the order 23 graph G0 shown in Figure 3.20. This graph is con-

structed from the Goldner-Harary graph (G11A in Figure 3.5 and also the first
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graph in Figure 3.21) by adding 12 vertices using repeated triangle identification

with copies of K4. Clearly ∆(G0) = 11 and by Lemma 3.2.2 G0 is LH, planar and

nonhamiltonian. Let the K3 subgraphs of G0 that are encircled in Figure 3.20 be

labeled H1, H2, . . . , H6 as shown. G0 is traceable, but it should be noted that there

is no Hamilton path that starts in Hi and ends in Hi, i ∈ {1, 2, 3, 4, 5, 6}. Now

let the graphs G0,1, G0,2, . . . , G0,6 be six copies of G0, each with the K3 subgraphs

labeled in the same way as in G0. Use triangle identification to combine G0 with

G0,i by identifying Hi in G0 with Hi in G0,i, i = 1, 2, 3, 4, 5, 6, to create the graph

G1 (This is possible, since each Hi contains a vertex that is of degree 3 in G0 and in

G0,i). Also note that ∆(G1) = 11 and that G1 is planar. Since each G0,i contains a

vertex cutset of order 5, it follows that a longest path in G1 omits one Hj subgraph

in four of the subgraphs represented by G0,i so that the longest path in G1 has length

23+2×20+4×17 = 131, while n(G1) = 23+6×20 = 143. One can now repeat the

procedure by combining G1 with 6 × 5 copies of G0 in the same way to create the

graph G2. A longest path in G2 contains 23+2×20+4×17+2×20+6×4×17 = 579

vertices, while n(G2) = 23+6×20+6×5×20 = 743. This process can be continued

indefinitely. By Lemma 3.2.2 (b) the graph Gk is planar and ∆(Gk) = 11, while the

longest path in Gk contains pk = 23 + 2× 20 + 4× 17 +
∑k

i=2(2× 20 + 6× 4i−1× 17)

vertices, while n(Gk) = 23 +
∑k

i=1 6 × 5i−1 × 20. It is then easy to show that

limk→∞
pk

n(Gk)
= 0 and the result follows for ∆ = 11. The result can easily be ex-

tended to greater values for the maximum degree by combining the graph Gk with a

planar graph with the required maximum degree by triangle identification with one

of the outer triangle subgraphs.

Note that Entringer and MacKendrick’s limit only implies the existence of con-

nected nontraceable LH graphs of order greater than or equal to 200. However,

Theorem 3.4.6 states that the smallest connected nontraceable LH graph has order

14, so there is much room for improvement for low values of n. Our next theorem

provides an upper limit for f(n) that is smaller than the one given by Entringer and

MacKendrick for n ≤ 427 and implies that f(n) < n for every n ≥ 15.

Theorem 3.6.4. f(n) ≤ d(2/3)ne+ 4.

Proof. Consider the graph G0 shown in Figure 3.21. This is the Goldner-Harary

graph shown in Figure 3.5 (a), redrawn to emphasize the fact that the six vertices
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H1 

H2 

H3 

H4 

H5 

H6 

Figure 3.20: The graph G0 used in Theorem 3.6.3.

V1 

G1 G0 

Figure 3.21: The graphs G0 and G1 used in Theorem 3.6.4.

of degree 3 are connected to each other by a cutset of 5 vertices. Now choose any

vertex of degree 3, call it v0, and using Lemma 3.2.2 use triangle identification to

combine G0 with three copies of K4, each time using v0 and two of its neighbours,

to create the graph G1. G1 now has a vertex cutset of order six (v1 is now also

in the cutset), the removal of which results in eight components. In general, the

graph Gi−1 can be combined with three copies of K4 using any vertex of degree 3 in

V (Gi−1), call it vi−1, to create the graph Gi. By Lemma 3.2.2 (a) and (b), Gi is LH

and planar. Also, Gi has a vertex cutset of order 5 + i, the removal of which results

in a graph consisting of 6 + 2i isolated vertices. It follows that a longest path in Gi

has no more than 2(5 + i) + 1 vertices, and that n(Gi) = 11 + 3i. Let q(n) be the

number of vertices in a longest path in a graph on n vertices constructed in this way

(where the last vertex vi to be used in triangle identification may have been used

once, twice, or three times). Then q(n) ≤ d(2/3)ne+ 4.
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Nested Locally Hamiltonian

Graphs

4.1 Introduction

We call a graph G locally locally connected (written LLC or L2C) if 〈N(v)〉 is an

LC graph for every v ∈ V (G). We extend this concept in a natural way to LkC

graphs for k = 0, 1, 2, . . . (where L0C simply means connected). LkH graphs are

defined analogously. (Formal definitions for these concepts are provided in Section

4.3.)

For each k ≥ 0, the class of LkH graphs contains an interesting subclass, namely

the class of SC (k + 2)-trees. (This is shown in Section 4.3.) Recall that the

class of SC 2-trees are exactly the maximal outerplanar graphs, and are therefore

L0H, while the SC 3-trees are exactly the chordal maximal planar graphs, and are

therefore LH - See Corollaries 2.1.5 and 3.1.7.

Our interest in LkH and LkC graphs was sparked by Theorem 1.2.7 by Oberly

and Sumner and their conjectured extensions of the theorem (Conjectures 1.2.8 and

1.2.9).

An LH graph is locally 2-connected, so the following conjecture is weaker than

the case k = 2 of Conjecture 1.2.8.

Conjecture 4.1.1. If G is a connected K1,4-free LH graph, then G is hamiltonian.

Let G be a connected, nonhamiltonian LH graph of order n. By Lemma 3.1.2,

∆(G) ≤ n− 3. If G contains an induced K1,4 with v as its central vertex, then the
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fact that 〈N(v)〉 is hamiltonian implies that d(v) ≥ 8, so that n ≥ 11. Thus, if Con-

jecture 4.1.1 is true, it would imply that every connected, nonhamiltonian, locally

hamiltonian graph has maximum degree at least 8 and order at least 11. Pareek

and Skupień [27] proved that the minimum order of nonhamiltonian, connected LH

graphs is indeed 11. It is shown in Section 3.3 that there are four nonhamiltonian,

connected LH graphs of order 11 and they all have maximum degree 8. Pareek

[26] claimed that every nonhamiltonian connected LH graph has maximum degree

at least 8, but there are flaws in his “proof” that I have not been able to rectify,

as discussed in Section 3.3. If Conjecture 4.1.1 is true, it would immediately prove

Pareek’s (as yet unproved) claim.

I shall show that if G is an LkH graph that is LmC for m = 0, 1, . . . , k − 1,

then G is locally (k + 1)-connected. This motivated us to consider the following

conjecture, which extends Conjecture 4.1.1 and is weaker than Conjecture 1.2.8.

Conjecture 4.1.2. If G is an LkH graph that is LmC for m = 0, 1, . . . , k − 1 and

G contains no induced K1,k+3, then G is hamiltonian.

Remark 4.1.3. In order to exclude trivial cases in our study of the hamiltonicity

of LkH graphs, I added the requirement that they be LmC for k = 0, 1, . . . , k − 1.

This is analogous to limiting investigations on the hamiltonicity of LH graphs to

the connected case. The graph consisting of two copies of K5 sharing a common

vertex is an example of an LLH graph that is connected but not LC and is trivially

nonhamiltonian.

Graphs satisfying the hypothesis of Conjecture 4.1.2 have a rich and regular

structure. In Section 4.2 I study LLH graphs that are connected and LC and I

develop means of constructing and manipulating such graphs to obtain ones with

prescribed properties. I show that the minimum order of a nonhamiltonian LLH

graph that is connected and LC is 13. Note that if Conjecture 4.1.2 is true, it

would imply that a nonhamiltonian graph that is LH, LkH and LmC for m =

0, 1, 2, . . . , k−1, has maximum degree at least 6+2k and hence order at least 9+2k

(by Lemma 3.1.2). In Section 4.3, for each k ≥ 1, I construct nonhamiltonian graphs

of order 9 + 2k that are LmH for m = 1, 2, . . . , k, as well as nonhamiltonian LkH

graphs of order 9 + 2k that are not LmH for m = 1, 2, . . . , k − 1. It is worth noting
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that these graphs are locally (k+ 1)-connected and all contain an induced K1,k+3 as

Conjecture 4.1.2 requires, but as will be shown, do not contain an induced K1,k+4.

This implies that if the Oberly-Sumner conjecture is true, it would be best possible

in a very strong sense.

I also construct a sequence of LkH graphs that are LmC, m = 0, 1, . . . , k − 1

such that the detour order becomes a vanishing fraction of the order of the graph.

Finally, I investigate the NP-completeness of the HCP for LkH graphs that are

LmC for m = 0, 1, . . . , k − 1 and for graphs that are LmH for m = 1, 2, . . . , k.

4.2 Locally locally hamiltonian graphs

Definition 4.2.1. A graph G is locally locally hamiltonian (LLH or L2H) if 〈N(v)〉

is locally hamiltonian for every v ∈ V (G).

The following is an alternative formulation of the above definition and is often

more convenient.

Definition 4.2.2. A graph G is locally locally hamiltonian (LLH or L2H) if 〈N(v)∩

N(u)〉 is a hamiltonian graph for every pair of adjacent vertices u, v ∈ V (G).

Since 〈NN(v)(u)〉 = 〈N(v) ∩ N(u)〉, it is clear that these two definitions are

equivalent.

Note that a hamiltonian graph has order at least three, since it contains a Hamil-

ton cycle.

Lemma 4.2.3. Let G be a connected, LLH graph that is also LC. Then G is

4-connected (and hence δ(G) ≥ 4).

Proof. Since connected LH graphs are 3-connected with minimum degree at least

3, it follows that LC, LLH graphs are locally 3-connected and are therefore 4-

connected by Theorem 3.1.4, and hence have δ ≥ 4.

In Section 3.2 I developed the concept of triangle identification to combine locally

hamiltonian graphs. I now show that a similar technique can be used to combine

LLH graphs. We refer to it as K4-identification.
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Construction 4.2.4. (K4-identification) For i = 1, 2, let Gi be an LLH graph that

contains a 4-clique Xi such that for each pair of vertices xj, xk ∈ V (Xi), there is a

Hamilton cycle in 〈N(xj)∩N(xk)〉 that contains the edge Xi−{xj, xk}. Now suppose

V (X1) = {v1, v2, v3, v4}, and V (X2) = {u1, u2, u3, u4}. Create a larger graph G by

identifying the vertices vj and uj, j = 1, 2, 3, 4 to a single vertex wj, while retaining

all the edges present in the original two graphs (see Figure 4.1). We say that G is

obtained from G1 and G2 by identifying suitable K4’s.

G1 G2 G 

v2 

v3 

v1 

v4 

u2 

u3 

u1 

u4 

w2 

w3 

w1 

w4 

Figure 4.1: The K4-identification procedure.

The following theorem is a special case of the more general Theorem 4.3.11

presented and proved in Section 4.3.

Theorem 4.2.5. If two LC, LLH graphs G1 and G2 are combined using K4-

identification to form a larger graph G, then G is also LC and LLH.

Our next result follows immediately from Definition 4.2.1 and Theorem 3.1.3.

Lemma 4.2.6. If G is an LC, LLH graph that is not LH, then ∆(G) ≥ 11.

Proof. G has a vertex v such that 〈N(v)〉 is LH but not hamiltonian. Hence d(v) ≥

11.

Theorem 4.2.7. Let G be a connected nonhamiltonian LC, LLH graph of minimum

order. Then n(G) = 13.

Proof. Suppose to the contrary that n(G) < 13. If G is not LH, then by Lemma

4.2.6 there exists a v ∈ V (G) such that d(v) ≥ 11. Then by Theorem 3.4.6, if

n(G) = 12, with ∆(G) = 11, 〈N(v)〉 is traceable and hence G is hamiltonian. We

can therefore assume G is also LH.

Let w ∈ V (G) be a vertex of maximum degree, and let C = v0v1 . . . v∆−1v0 be a

Hamilton cycle of 〈N(w)〉. Let X = 〈V (G) − N [w]〉 with V (X) = {x1, x2, . . . , xr}.

Note that δ(G) ≥ 4 by Lemma 4.2.3. This leads to the following claims.
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Claims If the vertices of X form an independent set, and G is nonhamiltonian,

then the following hold (indices of v taken modulo ∆(G)).

1. If ∆(G) = n− 3, then {vi, vi+1} 6⊂ N(xj).

2. If ∆(G) = n − 3, then it is not the case that vi ∈ N(xj) and vi+1 ∈ N(xk),

j 6= k.

3. If ∆(G) = n−4, then it is not the case that {vi, vi+1} ⊂ N(xk) and {vj, vj+1} ⊂

N(xm), where i 6= j, and k 6= m.

The Hamilton cycles that can be found if these conditions are not met are shown in

Figure 4.2.

Claim 1 Claim 2 Claim 3 

w w 
w 

w w 

xj xk xk 
xj 

xj 

xk xm xm 

xk 

xk 

xq 

xq 

Figure 4.2: The Hamilton cycles that prove the claims in Theorem 4.2.7.

Since G is LH, n(G) ≥ 11 by Theorem 3.1.3, ∆(G) ≤ n − 3 by Lemma 3.1.2,

and that ∆(G) ≥ 7 by Theorem 3.3.1.

Case 1: n(G) = 11 and ∆(G) = 7.

|V (X)| = 3, so if comp(X) = 1, X is traceable and G is obviously hamiltonian.

If comp(X) = 2, let the components of X be the edge x1x2 and the vertex x3.

Because |N(x3) ∩ N(w)| ≥ 4, {vi, vi+1} ⊂ N(x3) for some i ∈ {0, 1, . . . , 6}. Since

|N(x3) ∩ N(w)| ≥ 4, x3 has two consecutive neighbours on C, and hence G has a

Hamilton cycle similar to the one in Claim 1 (with xj = x3 and the edge x1x2 in the

place of xk). Therefore comp(X) = 3. Because N(xi) ∩N(w) ≥ 4, i = 1, 2, 3, each

vertex xi has two successive neighbours in N(w). By Claim 3 we have {vj, vj+1} ⊂

N(x1) ∩ N(x2) ∩ N(x3) for some j ∈ {0, 1, . . . , 6}. But then {w, x1, x2, x3} is an

independent set in N(vj), so that d(vj) ≥ 8.

Case 2: n(G) = 11 and ∆(G) = 8.

|V (X)| = 2, so if comp(X) = 1, X is traceable and G is obviously hamiltonian.

If comp(X) = 2 then by Claim 1 we have without loss of generality that N(x1) =
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{v1, v3, v5, v7} and then by Claim 2 it follows that N(x2) = N(x1). Since G is LLH,

〈N(x1)〉 is LH and since d(x1) = 4, we get 〈{v1, v3, v5, v7}〉 ∼= K4, so that d(vi) = 8,

i = 1, 3, 5, 7. Since ∆(G) = 8, v2 is not adjacent to either of v5, v7, otherwise that

vertex would have degree greater than 8. If v2 ∼ v0, then v1x1v7v6v5x2v3v4wv2v0v1 is

a Hamilton cycle in G. Hence |N(v1)∩N(v2)| = 2 contradicting that 〈N(v1)∩N(v2)〉

is hamiltonian.

Case 3: n(G) = 12.

From Theorem 3.3.4 we know that if n(G) = 12 and G is LH and nonhamil-

tonian, then ∆(G) = 9. Again, |V (X)| = 2 and if comp(X) = 1, X is traceable

and G is clearly hamiltonian, so we can assume comp(X) = 2. By Claim 1, we can

say without loss of generality that N(x1) = {v1, v3, v5, v7} and it follows by Claim 2

that N(x2) = N(x1). Since G is LLH, 〈N(x1)〉 is LH and since d(x1) = 4, we get

〈{v1, v3, v5, v7}〉 ∼= K4. With the exception of v8v0 there are no edges in G between

vertices in {v2, v4, v6, v8, v0} if G is nonhamiltonian, as will now be shown.

If v2v4 ∈ E(G), then v1x1v3v4v2wv6v5x2v7v8v0v1 is a Hamilton cycle in G.

If v2v6 ∈ E(G), then v1x1v3v4v5x2v7v6v2wv8v0v1 is a Hamilton cycle in G.

If v2v8 ∈ E(G), then v1x1v3v4v5x2v7v6wv2v8v0v1 is a Hamilton cycle in G.

If v2v0 ∈ E(G), then v1x1v3v4v5x2v7v6wv8v0v2v1 is a Hamilton cycle in G.

If v4v6 ∈ E(G), then v1v2v3x2v5v4v6wv0v8v7x1v1 is a Hamilton cycle in G.

If v4v8 ∈ E(G), then v1x1v7v6v5x2v3v2wv4v8v0v1 is a Hamilton cycle in G.

If v4v0 ∈ E(G), then v1v2v3x2v5v6wv4v0v8v7x1v1 is a Hamilton cycle in G.

if v6v8 ∈ E(G), then v1x1v7x2v5v4v3v2wv6v8v0v1 is a Hamilton cycle in G.

If v6v0 ∈ E(G), then v1v2wv6v0v8v7x2v5v4v3x1v1 is a Hamilton cycle in G.

Since δ(G) ≥ 4, it follows that each of v2, v4, v6, v8, v0 has an additional neighbour

in the set {v1, v3, v5, v7}. From the pigeonhole principle it follows that at least one

of v1, v3, v5, v7 has degree at least 10.

It follows that n(G) ≥ 13.

To see that n(G) = 13, note that the graphs in Figure 4.3 (a) and Figure 4.7 are

examples of nonhamiltonian LLH graphs of order 13.

Since we know that the smallest connected nontraceable LH graph has order 14

(Theorem 3.4.6), the next result is somewhat surprising.
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Theorem 4.2.8. Let G be a connected nontraceable LC, LLH graph of minimum

order. Then n(G) = 14 and if G is not LH, then G has a two-path cover.

Proof. First note that the graph in Figure 4.3 (b) is a nontraceable, connected LC,

LLH graph of order 14. We already know that a connected nontraceable LH graph

has order at least 14, so we can assume G is not LH. Then there is a vertex v ∈ V (G)

such that 〈N(v)〉 is LH but not hamiltonian. It follows that d(v) ≥ 11. Since all

LH graphs of order less than 14 are traceable, 〈N [v]〉 is hamiltonian, and therefore

if n(G) = 13, G is traceable, and if n(G) = 14, G has a two-path cover.

Note that the graphs in Figure 4.3 are LLH, but not LH. It is therefore not

surprising that 〈N(w)〉, where w is the vertex shown in Figure 4.3, is the Goldner-

Harary graph, which is the smallest connected nonhamiltonian LH graph [27]. A

method to construct a connected nonhamiltonian LLH graph of order 13 that is

also LH can be found as a special case of the graphs constructed in the proof of

Theorem 4.3.24.

w 

(a) (b) 

w 

Figure 4.3: (a) nonhamiltonian and (b) nontraceable LLH graphs of orders 13 and

14, respectively.

If G is any nonhamiltonian LH graph, then ∆(G) ≤ n− 3 (Lemma 3.1.2), and

if G is a nontraceable LH graph, then ∆(G) ≤ n− 4 (Corollary 3.4.3).

However, if G is a connected nonhamiltonian LC, LLH graph, then ∆(G) can

be as large as n− 1.

The graph in Figure 4.4 is an example of a nonhamiltonian LC, LLH graph of

order 15 for which the maximum degree is 14. To see that 15 is the smallest order

for which this is possible, note that if G is LLH with ∆(G) = n − 1, there exists

a vertex v ∈ V (G) such that d(v) = n − 1 and 〈N(v)〉 is LH and nontraceable,

otherwise G is hamiltonian. Therefore |N(v)| ≥ 14 and n(G) ≥ 15.
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The vertex v is 

adjacent to all 

other vertices. 

v 

Figure 4.4: A nonhamiltonian LLH graph of order 15 with maximum degree 14.

The following theorem is a special case of Lemma 4.3.14 that is proved in Section

4.3.

Theorem 4.2.9. Let G0 be a connected LC, LLH graph that contains a vertex v1

such that d(v1) = 4. Then 〈N(v1)〉 = K4 and v can be used four times in K4-

identification, once in combination with each of the four distinct subsets of three of

its neighbours. However, no 4-clique may be used more than once.

Theorem 4.2.9 can be used to construct nonhamiltonian and nontraceable LC,

LLH graphs, such as the two in Figure 4.3. These graphs were constructed by

combining two copies of K5 and then repeated combinations using the two vertices

of degree four and multiple copies of K5.

4.3 Locally k-nested hamiltonian graphs

In this section I generalize the concepts introduced in the first section. The intuitive

description of a locally k-nested hamiltonian graph G is that for any set of k mutually

adjacent vertices {v1, v2, . . . , vk} in V (G), the induced graph on the neighbourhood

of vk in the neighbourhood of vk−1 in the neighbourhood of vk−2 in the neighbourhood

of ... in the neighbourhood of v1 is hamiltonian. A more compact formal definition

is given below.

Definition 4.3.1. For k ≥ 1, a graph G is locally k-nested hamiltonian (LkH) if for

any subset {v1, ..., vk} of k mutually adjacent vertices in G, 〈N(v1) ∩ · · · ∩N(vk)〉

76



Local Properties of Graphs

is a hamiltonian graph.

The definition for locally k-nested connected graphs is similar:

Definition 4.3.2. For k ≥ 0 a graph G is locally k-nested connected (LkC) if for

any subset {v1, ..., vk} of k mutually adjacent vertices, 〈N(v1) ∩ · · · ∩N(vk)〉 is a

connected graph. The case where k = 0 simply means the graph is connected.

In the above definitions, the requirement that 〈N(v1) ∩ ... ∩N(vk)〉 is a graph

implies that it has at least one vertex (since the empty set is not a graph). This

implies the following lemma.

Lemma 4.3.3. If G is a graph that is LmC for m = 0, 1, ..., k and n(G) ≥ k + 2,

then every vertex v ∈ V (G) lies in a (k + 2)-clique.

Proof. The proof is by induction on k. If k = 0, then G is a connected graph of

order at least 2, so every vertex of G lies in a K2. Thus the result holds for k = 0.

Now suppose k ≥ 1 and let v be any vertex in G. Then, by the induction hypothesis,

v lies in a (k+1)-clique X. Since G is connected and n(G) ≥ k+2, there is a vertex

in G − V (X) that is adjacent to a vertex, say x1, in X. Since G is LC, 〈N(x1)〉

is connected, so there is a vertex in (V (G) − V (X)) ∩ N(x1) that is adjacent to a

vertex, say x2, in X − x1. Thus N(x1) ∩ N(x2) contains a vertex in G − V (X). If

k = 1, then X is contained in a 3-clique, so then the result is proved. If k ≥ 2,

then G is LLC, so then 〈N(x1)∩N(x2)〉 is connected and hence there is a vertex in

(V (G)−V (X))∩N(x1)∩N(x2) that is adjacent to a vertex, say x3, in X−{x1, x2}.

Carrying on in this manner, we eventually find k vertices x1, x2, . . . , xk such that

there is a vertex z in (V (G)− V (X)) ∩N(x1) ∩ · · · ∩N(xk) that is adjacent to the

only remaining vertex in X−{x1, x2, . . . , xk}. Then 〈{z}∪V (X)〉 is a (k+2)-clique

that contains v.

The corollary follows immediately from the proof of Lemma 4.3.3.

Corollary 4.3.4. If G is a graph that is LmC for m = 0, 1, ..., k and n(G) ≥ k+ 2,

then any edge uv ∈ E(G) lies in a (k + 2)-clique.

I will now examine some of the implications of the definition for the structure of

LkH graphs that are LmC for m = 0, 1, ..., k − 1.
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Lemma 4.3.5. If G is an LkH graph that is LmC for m = 0, 1, ..., k − 1, then

δ(G) ≥ k + 2.

Proof. From Lemma 4.3.3 and since an LkH graph is also LkC, it follows that every

vertex v ∈ V (G) lies in a (k + 2)-clique and therefore there exist k − 1 vertices

u1, . . . , uk such that N(v)∩N(u1)∩ · · ·∩N(uk−1) is not an empty set. That implies

that 〈N(v)∩N(u1)∩ · · · ∩N(uk−1)〉 is a hamiltonian graph and hence has order at

least 3, and therefore |N(v)∩N(u1)∩· · ·∩N(uk−1)| ≥ 3, and the result follows.

The next two corollaries follow immediately.

Corollary 4.3.6. The smallest LkH graph that is LmC for m = 0, 1, ..., k − 1 is

Kk+3.

Corollary 4.3.7. If G is an LkH graph that is LmC for m = 0, 1, ..., k − 1 and

d(v) = k + 2 for some v ∈ V (G), then 〈N(v)〉 ∼= Kk+2.

Repeated application of the next theorem shows that Definition 4.3.1 is equiva-

lent to the intuitive description of LkH graphs. This theorem will also be used in

some of the proofs that follow.

Theorem 4.3.8. Let G be an LkH graph that is LmC for m = 0, 1, ..., k− 1. Then

for any v ∈ V (G), 〈N(v)〉 is an Lk−1H graph that is LmC for m = 0, 1, ..., k − 2.

Proof. Since G is LmC for m = 0, 1, ..., k (because G is also LkH), it follows from

Lemma 4.3.3 that v lies in a (k+2)-clique. Let {u1, u2, . . . , uk−1} be any set of k−1

mutually adjacent neighbours of v. Then 〈N(v) ∩N(u1) ∩ · · · ∩N(uk−1)〉 is hamil-

tonian, since G is LkH. Since 〈NG(v) ∩NG(u1) ∩ · · · ∩NG(uk−1)〉 = 〈N〈N(v)〉(u1) ∩

N〈N(v)〉(u2) ∩ · · · ∩ N〈N(v)〉(uk−1)〉, it is clear that 〈N〈N(v)〉(u1) ∩ N〈N(v)〉(u2) ∩ · · · ∩

N〈N(v)〉(uk−1)〉 is hamiltonian. Hence 〈N(v)〉 is Lk−1H. Similarly, 〈N(v)〉 is LmC

for m = 0, 1, . . . , k − 2.

Theorem 4.3.9. If k ≥ 1 and G is an LkH graph that is LmC for m = 0, 1, ..., k−1,

then G is (k + 2)-connected and locally (k + 1)-connected.

Proof. The proof is by induction on k. The result obviously holds for k = 1. Now

let k ≥ 2, and let v ∈ V (G). Then by Theorem 4.3.8, 〈N(v)〉 is Lk−1H and LmC
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for m = 0, 1, . . . , k − 2. Hence, by the induction hypothesis, 〈N(v)〉 is (k + 1)-

connected. Hence G is locally (k + 1)-connected and therefore, by Theorem 3.1.4,

G is (k + 2)-connected.

In order to deal with LkH graphs we’ll need a way to construct and manipulate

such graphs for any value of k. The following construction, which is a generalization

of triangle identification, provides the necessary tool.

Construction 4.3.10. (Kk+2-identification) For i = 1, 2, let Gi be an LkH graph

that contains a (k + 2)-clique Xi with V (X1) = {v1, v2, . . . , vk+2} and V (X2) =

{u1, u2, . . . , uk+2}. Furthermore, suppose that for each distinct k-clique Yi in Xi,

there is a Hamilton cycle of
⋂

v∈V (Yi)
N(v) that contains the edge 〈Xi − V (Yi)〉.

Create a larger graph G by identifying the vertices vj and uj, j = 1, 2, . . . , k + 2 to

a single vertex wj, and by retaining all the edges present in the original two graphs.

Figure 4.1 illustrates the procedure for k = 2. We say that G is obtained from G1

and G2 by identifying suitable Kk+2’s.

Theorem 4.3.11. If two LkH graphs G1 and G2 that are LmC for m = 0, 1, ..., k−1

are combined using Kk+2-identification to form a larger graph G, then G is also an

LkH graph that is LmC for m = 0, 1, ..., k − 1.

Proof. Let Xi be a (k+2)-clique in Gi, for i = 1, 2. Let V (X1) = {v1, v2, . . . , vk+2} ⊂

V (G1), V (X2) = {u1, u2, . . . , uk+2} ⊂ V (G2), and let W = {w1, w2, . . . , wk+2} be

the vertices in G obtained by identifying vi with ui, i = 1, 2, . . . , k + 2. Observe

that if Z is a clique in G that contains a vertex in G1 −W , then 〈
⋂

a∈V (Z) N(a)〉 is

contained in V (G1).

It is therefore only necessary to consider k-cliques in W . Let Z be a k-clique in W

and let e be the edge 〈V (W )−V (Z)〉. Then, by the definition of Kk+2-identification,

there is a Hamilton cycle Ci in 〈
⋂

z∈Z NGi
(z)〉 containing the edge e, for i = 1, 2.

Let C1 = vlPvmvl and C2 = ulQumul where the end vertices of e are vl and vm in G1

and ul and um in G2. Then C = wlPwmQwl is a Hamilton cycle of 〈
⋂

z∈Z NG(z)〉.

Similarly, when checking that G is LmC, m = 0, 1, 2, . . . , k − 1, we need only

consider m-cliques in W . For any m-clique in W with vertices w1, w2, . . . , wm, both

〈NG1(v1) ∩ · · · ∩ NG1(vm)〉 and 〈NG2(u1) ∩ · · · ∩ NG2(um)〉 are connected. It then
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follows that 〈NG(w1) ∩ · · · ∩NG(wm)〉 is connected, since the vertices in W induce

a complete graph.

Note that Kk+2-identification of two LqH, LmC, m = 0, 1, 2, . . . , k − 1 graphs

where 0 < q < k does not in general result in an LqH graph. For example, the graph

in Figure 4.3 (a) was constructed using multiple copies of K5, and is L2H and LC,

but is not LH.

The following construction will be required for Theorem 4.3.26.

Construction 4.3.12. (Kk+2-identification within a graph) Let Ga be an LkH graph

that, for i = 1, 2, contains disjoint (k+2)-cliques Xi with V (X1) = {v1, v2, . . . , vk+2}

and V (X2) = {u1, u2, . . . , uk+2}. Furthermore, suppose that for each distinct k-

clique Yi in Xi, there is a Hamilton cycle of
⋂

v∈V (Yi)
N(v) that contains the edge

Xi − V (Yi). Finally, let N(V (X1) ∩ N(V (X2) = ∅. Create graph G by identifying

the vertices vj and uj, j = 1, 2, . . . , k + 2 to a single vertex wj, and by retaining

all the edges present in the original graph. We say that G is obtained from Ga by

identifying suitable Kk+2’s within Ga.

Corollary 4.3.13. Let Ga be an LkH graph that is LmC for m = 0, 1, ..., k− 1 and

let G be a graph that was obtained by identifying suitable Kk+2’s within Ga. Then

G is also an LkH graph that is LmC for m = 0, 1, ..., k − 1.

Proof. We use the same notation as in Construction 4.3.12. The argument used in

the proof of Theorem 4.3.11 is directly applicable here as well, since N(V (X1)) ∩

N(V (X2)) = ∅.

Lemma 4.3.14. Let G1 be an LkH graph that is LmC for m = 0, 1, ..., k − 1 and

that contains a vertex v1 such that d(v1) = k + 2. Then 〈N(v1)〉 ∼= Kk+2 and v1

can be used k+ 2 times in Kk+2-identification, once in combination with each of the

k + 2 distinct subsets of k + 1 of its neighbours.

Proof. Let NG1(v1) = {v2, v3, . . . , vk+3}. Throughout this proof, the vertices {v1, v2,

. . . , vk+3} that are used in Kk+2-identification will retain their labels. Since d(v1) =

k + 2, it follows from Corollary 4.3.7 that 〈NG1(v1)〉 ∼= Kk+2. Let G2, G3, . . . , Gk+3

be the graphs that will successively be used in Kk+2-identification to form the

graphs G1,2, G1,2,3, . . . , G1,2,...,k+3. Furthermore, without loss of generality, let Gi
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be combined with G1,2,...,i−1 using the (k + 3)-clique 〈{v1, v2, . . . , vk+3} − {vi}〉, i =

2, 3, . . . , k+3 to create the graph G1,2,...,i. First consider using Kk+2-identification to

combineG1 withG2 to create the graphG1,2 and let {u1, u2, . . . , uk} = {v1, v2, . . . , vk+3}−

{v2}−{vl, vm}, where {vl, vm} ⊂ {v1, v2, . . . , vk+3}−{v2}, l 6= m. It suffices to show

that in every Kk+2-identification step, the graph 〈N(u1)∩N(u2)∩ · · · ∩N(uk)〉 has

a Hamilton cycle that includes the edge vlvm. Since N(u1)∩N(u2)∩ · · · ∩N(uk) =

{v2, vl, vm}, 〈N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉 ∼= K3, and it clearly follows that the

edge vlvm is part of the Hamilton cycle in 〈N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉. Note

that after the Kk+2-identification is done, the edge vlvm in the Hamilton cycle in

〈N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉 is replaced by a path containing only vertices that

originated from G2. This argument applies to any choice of l and m.

We now proceed with the next Kk+2-identification, that between G1,2 and G3 to

create the graph G1,2,3, and continue in this manner. Consider the case in which we

combine G1,2,...,i−1 with Gi to form the graph G1,2,...,i. This is done by identifying

{v1, v2, . . . , vi−1, vi+1, . . . , vk+3} ⊂ V (G1,2,...,i−1) with vertices in V (Gi). Without loss

of generality let {u1, u2, . . . , uk} = {v1, v2, . . . , vi−1, vi+1, . . . , vk+3} − {vl, vm}, where

{vl, vm} ⊂ {v1, v2, . . . , vi−1, vi+1, . . . , vk+3}, l 6= m. Note that N(vi) ∩ V (Gi) = ∅ for

all i = 2, 3, . . . , k+3. It follows that N(u1)∩N(u2)∩· · ·∩N(uk) = {vl, vm, vi}∪X∪Y ,

where X ⊂ V (Gl), Y ⊂ V (Gm) if l, j < i, respectively, and X = ∅ and Y = ∅ if

l, j > i, respectively. It follows that in 〈N(v1) ∩ N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉

there are two paths connecting vl and vm: one path includes vi, and the other

path is the edge vlvm (see Figure 4.5). Also, by inductive hypothesis the graph

〈N(v1) ∩ N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉 is hamiltonian. Therefore in G1,2,...,i, the

Kk+2 graph induced by {v1, v2, . . . , vi−1, vi+1, . . . , vk+3} is suitable for use in Kk+2-

identification.

vi 

vm vl 

X
  V

(G
m
) Y

  V
(G

l ) 

Figure 4.5: The graph 〈N(u1) ∩ N(u2) ∩ · · · ∩ N(uk)〉 used in the proof of Lemma

4.3.14.
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Remark 4.3.15. A (k+ 2)-clique with vertices v1, v2, . . . , vk+2 in an LkH graph G1

can only be used once in Kk+2-identification to combine G1 with an LkH graph G2.

The reason is that before Kk+2-identification the edge vk+1vk+2 is part of a Hamilton

cycle in 〈NG1(v1) ∩ NG1(v2) ∩ · · · ∩ NG1(vk)〉. After Kk+2-identification, the edge

vk+1vk+2 is replaced in the Hamilton cycle in 〈NG(v1)∩NG(v2)∩ · · · ∩NG(vk)〉 by a

path with vertices that originated from G2.

At this point we have the necessary tools to start investigating the more inter-

esting aspects of LkH graphs that are LmC for m = 0, 1, . . . , k− 1. I start with the

relationship with k-trees.

Dirac [15] proved the following (the original formulation has been modified to

bring it into line with the terminology used here):

Theorem 4.3.16. [15] A graph G is a chordal graph if and only if every minimal

cutset of G is a clique.

From this we readily get the following corollary which will be required for the

proof of Theorem 4.3.20.

Corollary 4.3.17. If G is a k-tree, then G is a chordal graph.

Rose [28] proved the following theorem that will be needed for the proof of

Theorem 4.3.20.

Theorem 4.3.18. [28] Let G be a k-tree and let u and v be any pair of nonadjacent

vertices in G. Then there are exactly k vertex disjoint u - v paths in G.

Observation 4.3.19. If a given k-clique X is used r times (r ≥ 0) in the construc-

tion of a k-tree G, then G − V (X) has r + 1 components, each of which contains

one vertex of
⋂

x∈V (X) N(x).

Theorem 4.3.20. For k ≥ 3 a k-tree G is an Lk−2H graph that is LmC for m =

0, 1, . . . , k − 3 if and only if G is a SC k-tree.

Proof. First, suppose G is a k-tree that is not a SC k-tree. Then some k-clique X

was used more than once in the k-tree construction of G. By Observation 4.3.19,

there are three independent vertices u1, u2, u3 in
⋂

x∈V (X)NG(x). Now let Y be any

(k − 2)-clique in X and let {v1, v2} = V (X)− V (Y ). By Theorem 4.3.18, there are
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exactly k internally disjoint paths between any two vertices in {u1, u2, u3}. Each

such path contains exactly one vertex of X. Since {v1, v2} are the only vertices

of X in
⋂

y∈V (Y ) NG(y), any cycle in 〈
⋂

y∈V (Y ) NG(y)〉 misses at least one of the

vertices in {u1, u2, u3}. Thus 〈
⋂

y∈V (Y ) NG(y)〉 is not hamiltonian and hence G is

not Lk−2-hamiltonian.

Now let G be a SC k-tree of order n. We prove by induction on n that G is

Lk−2H. If n = k + 1, then G = Kk+1, which is obviously Lk−2H. Now assume

n ≥ k + 2. Let z be the last vertex added in the k-tree construction of G. Then

G − z is a SC k-tree of order n − 1 and 〈N(z)〉 is a k-clique in G − z that has

not been used in the k-clique construction of G − z. Let N(z) = {v1, . . . , vk}. By

Observation 4.3.19, 〈
⋂

v∈N(z) NG−z(v)〉 consists of a single vertex, say vk+1. By our

induction hypothesis, G − z is Lk−2H. Thus, to prove that G is Lk−2H, we only

need to show that the k-clique 〈N(z)〉 is suitable for k-clique identification.

Now consider any (k − 2)-clique Y in 〈N(z)〉. Then 〈
⋂

y∈V (Y ) NG−z(y)〉 has a

Hamilton cycle C, sinceG−z is Lk−2H. We may assume that V (Y ) = {v1, . . . , vk−2}.

Then {vk−1, vk, vk+1} ⊆
⋂

y∈Y NG−z(y) and vk+1 is the only common neighbour of

vk−1 and vk in
⋂

y∈Y NG−z(y). Suppose C does not contain the edge vk−1vk. Then⋂
y∈Y NG−z(y) contains a vk−1−vk path that contains neither the edge vk−1vk nor the

vertex vk+1. Let P be a shortest such path. We note that vk−1 and vk do not have a

common neighbour on P , so P has at least four vertices and, by the minimality of P ,

the cycle vkvk−1Pvk is chordless, contradicting Corollary 4.3.17. Hence C contains

the edge vk−1vk, so 〈N(z)〉 is suitable for k-clique identification. This proves that G

is Lk−2H.

The proof of the next theorem will require the following lemma:

Lemma 4.3.21. If G is an LkH graph that is LmC, m = 0, 1, . . . , k − 1 with

v ∈ V (G) and n(G) ≥ k+ 4, and 〈N(v)〉 is a complete graph, then G− v is also an

LkH graph that is LmC, m = 0, 1, . . . , k − 1.

Proof. Only the neighbourhoods of vertices adjacent to v are affected by the removal

of v fromG, so to show thatG−v is LkH, we need only consider the k-cliques that are

contained in 〈N(v)〉. Let X be a k-clique in 〈N(v)〉. Then
⋂

x∈V (X) NG(x) contains

the vertex v and hence contains a Hamilton cycle C that contains a subpath u1vu2,
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with u1, u2 ∈ N(v) − V (X). Since 〈N(v)〉 is a complete graph, u1u2 is an edge in⋂
x∈V (X) NG−v(u). Replacing the path u1vu2 with the edge u1u2 yields a Hamilton

cycle of
⋂

x∈V (X) NG−v(u). Hence G− v is LkH.

It is also easily seen that G − v is connected, and if 1 ≤ m ≤ k − 1 and Z is

any m-clique in 〈N(v)〉, then
⋂

z∈V (Z) NG−v(v) is connected. Hence G is LmC for

m = 0, 1, . . . , k.

We note that a graph that is LmH for m = 1, 2, ..., k has minimum degree at

least k + 2. Our next result follows from the fact that the neighbourhood of any

vertex of degree k + 2 in such a graph induces a complete graph.

Corollary 4.3.22. If G is a connected graph that is LmH for m = 1, 2, . . . , k, and

a vertex v of degree (k + 2) is removed from G, then G − v is also an LmH graph

for m = 1, 2, . . . , k.

Theorem 4.3.23. For each k ≥ 1 there exists an LkH graph that is LmC for

m = 0, 1, ..., k− 1 but that is not LlH for 0 ≤ l < k that has order 9 + 2k. For each

k ≥ 2 there exists a nontraceable LkH graph that is LmC for m = 0, 1, ..., k − 1 but

that is not LlH for 0 ≤ l < k that has order 10 + 2k.

Proof. By Theorem3.1.3 the smallest connected nonhamiltonian LH graph is of or-

der 11, and in Theorem 4.2.7 we showed that if G is connected, LC, nonhamiltonian

and L2H, then n(G) ≥ 13. From Theorem 3.4.6 we know that the smallest con-

nected nontraceable LH graph is of order 14. Therefore the result holds for k = 1

and k = 2.

To prove the general case, we will show how to construct such graphs using Kk+2-

identification. Combine two copies of Kk+3 using Kk+2-identification. This results

in an LkH graph Hk that is LmC for m = 0, 1, ..., k− 1 of order k+ 4, that contains

two vertices u and v of degree k + 2, and u 6∼ v. By Lemma 4.3.14, we can use

N [u] to combine Hk with k+ 2 copies of Kk+3, and we can use N [v] to add another

three copies of Kk+3 to create the LkH graph Gk that is LmC for m = 0, 1, ..., k− 1,

where n(Gk) = 9 + 2k. Further note that Gk has a vertex cutset V (Hk) of order

k + 4, the removal of which breaks Gk into k + 5 components, meaning that Gk

is not hamilonian. To create a nontraceable graph, use N [v] to combine Gk with

another copy of Kk+3 to create the LkH graph G′k. Note that n(G′k) = 10 + 2k and
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that G′k contains a vertex cutset of order k+ 4, the removal of which results in k+ 6

components, meaning that G′k is not traceable. Figure 4.3 illustrates these graphs

for k = 2.

We still have to show G and G′ are not LmH, where 1 ≤ m < k. The two graphs

G2 and G′2 are the graphs in Figure 4.3. In G2 and G′2, 〈N(w)〉 (where w is the

vertex indicated in the figure) is the Goldner-Harary graph, which is the smallest

nonhamiltonian LH graph. It follows that for k = 2, Gk and G′k are LkH but not

LmH for 1 ≤ m < k. Using induction on k, assume that Gk and G′k are LkH graphs

that are LmC for m = 0, 1, ..., k−1 but not LmH, where 1 ≤ m < k. In the subgraph

Hk in both Gk and G′k, let the graph induced by the k + 2 vertices of degree k + 3

be Wk. Add vertices u1 and w1 to Gk and G′k to create the graphs Fk+1 and F ′k+1.

In Fk+1 and F ′k+1, u1 is adjacent to the vertices u and V (Wk) and in Fk+1, w1 is

adjacent to all the vertices in V (Gk) and in F ′k+1, w1 is adjacent to all the vertices

in V (G′k). Now Fk+1 and F ′k+1 are the graphs Gk+1 and G′k+1 constructed above and

〈NFk+1
(w1)〉 is the graph Gk and 〈NF ′

k+1
(w1)〉 is the graph G′k. See Figure 4.6 for an

illustration of the technique.

w1 

u1 u u 

v v 

Wk 

Wk+1 

v 

u u1 

w1 

Figure 4.6: Converting an L2H graph to an L3H graph.

This completes the proof.

I now turn my attention to minimum orders of connected nonhamiltonian graphs

that are LmH, m = 1, 2, . . . , k.

Theorem 4.3.24. For any k ≥ 1, there exists a connected nonhamiltonian graph of

order 9 + 2k that is LmH for every m = 1, 2, . . . , k.

Proof. A connected nonhamiltonian graph Gk of order 9 + 2k that is LmH for

m = 0, 1, ..., k can be constructed in the following way. Start with a Kk+4 graph
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W with V (W ) = {w0, w1, . . . , wk+3} and add a vertex u that is adjacent to all

vertices in V (W ). Then add k + 4 vertices vi, i = 0, 1, . . . , k + 3, where N(vi) =

{wi, wi+1, . . . , wi+k+1}, where subscripts are taken modulo k + 4. Figure 4.7 shows

such a graph for k = 2. Graph G11B in Figure 3.5 is the graph for k = 1.

To see that Gk is nonhamiltonian, note that V (W ) is a cutset, |V (W )| < V (G)/2

and V (G) − V (W ) is an independent set of vertices. It remains to be shown that

Gk is LmH, m = 1, 2, . . . , k. The induced graphs on the neighbourhoods of each

of u, v0, v1, . . . , vk+3 are complete graphs, and it follows that 〈N(x0) ∩ . . . ∩N(xj)〉

is hamiltonian, where x0 ∈ {u, v0, v1, . . . , vk+3} and {x2, . . . , xj} ⊂ N(x0) and j ≤

k − 1.

To prove the result for the intersection of neighbourhoods of vertices in V (W ),

we will use induction on k. It is easy to see that G1 and G2 meet the require-

ments of the theorem. Now assume that Gk is LmH, m = 1, 2, . . . , k. By inspec-

tion we find Gk+1, we find that 〈NGk+1
(w1)〉 ∼= Gk − v1. It follows from Corollary

4.3.22 that 〈NGk+1
(w1)〉 is LmH, m = 1, 2, . . . , k. Also, 〈NGk+1

(w1)〉 is hamiltonian:

w2v0w3vk+4w4v3w5v4 . . . wk+4vk+3w0uw2 is a Hamilton cycle.

Note that 〈N(wi)〉 ∼= 〈N(wj)〉, i, j ∈ {0, 1, . . . , k + 3}, so the result follows.

v0 

w1 

v1 
v2 

v3 

v4 

v5 

Figure 4.7: A connected graph of order 13 that is both LH and LLH but not

hamiltonian.

In the light of Conjecture 4.1.2 it is interesting to note that the graphs con-

structed in the proof of Theorem 4.3.24 are locally (k + 1)-connected, and contain

an induced K1,k+3, but as the proof of Corollary 4.3.25 makes clear, do not con-

tain an induced K1,k+4. Conjecture 4.1.2 is therefore the best possible, and the

Oberly-Sumner conjecture is the best possible in a very strong sense.
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Corollary 4.3.25. For any k ≥ 1 there exists a connected nonhamiltonian graph

that is LmH for m = 1, 2, . . . , k that does not contain an induced K1,k+4.

Proof. Consider the graph Gk that is LmH for m = 1, 2, . . . , k constructed in the

proof of Theorem 4.3.24. We use the same nomenclature as in the proof of Theorem

4.3.24. The vertex in a K1,q star that has degree greater than one is referred to as the

centre vertex of the star. Since the neighbourhoods of the vertices u, v1, v2, . . . , vk+4

all induce complete graphs, it is clear that none of these vertices can be the centre

vertex of an induced K1,k+4. Since 〈N(wi)〉 ∼= 〈N(wj)〉 for {i, j} ⊆ {0, 1, . . . , k+ 3},

we need only consider 〈N(wk+3)〉. N(wk+3) = {w0, w1, . . . , wk+2, u, v2, v3, . . . , vk+3}.

Since 〈{w0, w1, . . . , wk+2}〉 induces a complete graph, say Wk+3, and wi ∼ u, i =

0, 1, . . . , k + 3, and vi, i = 0, 1, . . . , k + 3, only has neighbours in V (W ), it follows

that α(〈N(wk+3)〉) = k + 3, where α is the independence number.

Similar constructions for connected nontraceable graphs that are LmH for m =

1, 2, . . . , k do not yield graphs of order 10 + 2k, as is the case for nontraceable LkH

graphs that are LmC, m = 0, 1, . . . , k−1, but rather graphs of order 12+2k. This is

because it is not possible to add another vertex of degree k+2 to the nonhamiltonian

graph in such a way that the resulting graph is still LmH for m = 1, 2, . . . , k. Figure

4.8 is an example of such a nontraceable graph that is LLH and LH of order 16.

It is not known at this stage whether it is possible to improve on this result. It

is speculated that this is due to these graphs being LH, since for connected LH

graphs, the smallest nonhamiltonian graph has order 11 (= 9+2k), but the smallest

nontraceable graph has order 14 (= 12 + 2k).

Figure 4.8: A nontraceable LH, LLH graph of order 16.

Next I investigate the complexity of the Hamilton Cycle Problem for LkH graphs.
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I start with a theorem for L2H graphs.

Theorem 4.3.26. The Hamilton Cycle Problem for connected, locally connected

L2H graphs with maximum degree 12 is NP-complete.

Proof. The proof will follow the same pattern as the proofs of Theorems 2.3.6 and

3.3.5. We start with a cubic graph G′ and construct a connected, LC, L2H graph

G that is hamiltonian if and only if G′ is hamiltonian.

Each vertex in G′ is represented by a copy of K5 in G, and will be referred to as

a node in G.

Each edge in G′ is represented by a more complex structure, that is based on the

graph H in Figure 4.9. This is the graph that was constructed as part of the proof

of Theorem 4.2.7 and is shown in Figure 4.3 (a) (it has been redrawn in Figure 4.9

to make it easier to represent the construction to follow). We use K4-identification

to combine H with two copies of graph D in Figure 4.9 in the following way: using

the first copy of D we indentifty uj and xj, j = 1, 2, 3, 4, and using the second copy

of D we identify vj and xj, j = 1, 2, 3, 4. This creates the graph Fi shown in Figure

4.10.

v1 

v4 

u3 

v2 

v3 

u4 

u2 

u1 

x2 

x4 

x3 

x1 

H D 

Figure 4.9: The graphs H and D used in the proof of Theorem 4.3.26.

The edges in G′ are represented by copies of Fi in G, and will be referred to as

“borders”. The borders are connected to the nodes by means of K4-identification.

Let the vertices in a node in G be y1, y2, y3, y4, y5 and let the vertices in Fi be labeled

as shown in Figure 4.10. Since each vertex in G′ has degree three, each node in G

is attached to three copies of Fi. We identify the vertices as shown in Table 4.1
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wi,1 wi,4 

wi,2 

wi,3 

Fi 

Figure 4.10: The graph Fi used in the proof of Theorem 4.3.26.

(after each vertex identification, the resulting vertex retains the y-label). We use

the graphs F1, F2 and F3 for illustrative purposes. See Figure 4.11 (the heavy lines

in G represent edges belonging to the nodes).

Vertex in node Vertex in Fi

y1 w1,2

y2 w1,1

y4 w1,4

y5 w1,3

y1 w2,3

y2 w2,2

y3 w2,1

y5 w2,4

y1 w3,1

y2 w3,2

y3 w3,3

y4 w3,4

Table 4.1: Vertices identified in the proof of Theorem 4.3.26.

Checking the degrees of the vertices that have been identified shows that ∆(G) =

12 and by Theorem 4.3.11, Lemma 4.3.14 and Corollary 4.3.13, G is L2H.

Figure 4.11 shows how a Hamilton cycle in G′ can be translated to a Hamilton

cycle in G (the heavy lines represent the Hamilton cycles). To see that if G is hamil-

tonian, then G′ is also hamiltonian, consider the graph H that forms the connection
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between two nodes in G. Note that u2, u3, u4, v2, v3, v4 are the only neighbours of

the five unlabeled vertices in Figure 4.9. Therefore any path cover of H contains

at most one path that has one end vertex in u1, u2, u3, u4 and one end vertex in

v1, v2, v3, v4. Thus every Hamilton cycle in G has at most one path from node Zi to

node Zj that passes through the border between them. Since each node has three

borders incident to it, the result follows.

z1 

z2 z3 

z4 

e1 

e3 

e2 

Z1 

Z2 

Z3 

Z4 

B3 

B2 
B1 

Nodes and borders in G 

Nodes and borders in G’ 
y2 

y5 

y4 

y3 

y1 

Figure 4.11: Converting the graph G′ to the graph G in Theorem 4.3.26.
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Graph G’ 

Z1 

Z2 

Z6 

Z5 

Z4 

Z3 

Graph G 

z3 

z2 

z1 

z6 

z5 

z4 zi V(G’) 

Zi is the corresponding 

node in G 

Figure 4.12: Translating a Hamilton cycle from G′ to G in Theorem 4.3.26.

The proofs of Theorems 2.3.6, 3.3.5 and 4.3.26 rely on the existence of graphs

that are LT , LH, or L2H, respectively, and that have the following properties: they

are nonhamiltonian, but traceable between two vertices of minimum degree, and if

the order of the graph is 2q + 1, then the graph is q
q+1

-tough. Note that the graphs

of order 9 + 2k constructed in the proof of Theorem 4.3.23 have these properties for

all values of k. It follows that similar NP-completeness theorems are possible for
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all k ≥ 3 for graphs that are LkH and LmC for m = 0, 1, ..., k − 1. The smallest

value of the maximum degree that these theorems yield depends on the choice of

neighbours for the vertices of minimum degree in the graphs of order 9 + 2k. As k

increases, there is increasing flexibility in the choice of neighbours for the vertices

of minimum degree. Detailed calculations for k = 3, 4, 5, 6, 7, 8 show that the HCP

for LkH graphs that are LmC for m = 0, 1, ..., k − 1 is NP-complete for maximum

degree 3k + 6. When doing these calculations, the constructions follow a regular

pattern and there is every reason to expect that the relationship 3k+ 6 will hold for

all k ≥ 1.

When looking at the NP-completeness of the HCP for graphs that are LmH for

m = 1, 2, . . . , k, we don’t have the advantage of a theorem equivalent to Lemma

4.3.14. This means that any construction has to be checked in detail to confirm that

the resulting graph is LmH for m = 1, 2, . . . , k. I begin with k = 2.

Theorem 4.3.27. The HCP for graphs that are both LH and LLH with maximum

degree 13 is NP-complete.

Proof. We use the same construction as in the proof of Theorem 4.3.26, except that

now the graph H is the graph shown in Figure 4.7. We combine H with two copies

of the graph D to create the graph shown in Figure 4.13. When connecting borders

to nodes to construct the graph G, we take care to limit the degree of vertices in the

nodes to 10, as shown in Figure 4.14. Since the smallest connected nonhamiltonian

LH graph has order 11, this ensures that in G, for any vertex v that lies in a node,

〈N(v)〉 is a hamiltonian graph. We still have to confirm that for any vertex u that

is in a border and adjacent to a node, 〈N(u)〉 is hamiltonian. This is easily done,

since there are only 8 such vertices in any border, and by symmetry, only one border

has to be checked (see Figure 4.14). It follows that G is both LH and LLH.

Fi 

Figure 4.13: A border used in the construction of the graph G in Theorem 4.3.27.
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Graph G’ 

Z2 
Z5 

Graph G 

z3 

z2 

z1 

z6 

z5 

z4 zi V(G’) 

Zi is the corresponding 

node in G 

Z1 Z4 

Z3 
Z6 

Figure 4.14: Translating a Hamilton cycle from G′ to G in Theorem 4.3.27.

Again H has the properties discussed in the paragraph above this theorem, so

we can assume that if G is hamiltonian then G′ is hamiltonian. To see that G is

hamiltonian if G′ is hamiltonian, the reader is referred to Figure 4.14, where the

heavy lines represent edges that are in a Hamilton cycle.

Detailed calculations for the cases k = 3 and k = 4 show that the HCP is

NP-complete for graphs that are LmH for m = 1, 2, . . . , k that have maximum

degree 16 for k = 3 and maximum degree 19 for k = 4. There appears to be a

pattern according to which the HCP is NP-complete for graphs that are LmH for

m = 1, 2, . . . , k that have maximum degree 3k + 7, for k ≥ 2. Again there is reason

93



Chapter 4

to expect that the relationship will hold for all values of k ≥ 2, since the pattern of

the construction is quite regular. It is an interesting question whether these results

are the best possible, particularly since for k = 1 we know the HCP is NP-complete

for maximum degree 3k + 6 (Theorem 3.3.5).

Finally, some additional properties of LkH graphs will be derived.

Theorem 4.3.28. For any i ≥ k + 2 there exists a nontraceable LkH graph G that

is LmC for m = 0, 1, ..., k − 1 such that δ(G) = i.

Proof. Starting with the nontraceable LkH graphG′k that is LmC form = 0, 1, ..., k−

1 of order 10 + 2k constructed in the proof of Theorem 4.3.23, one can construct the

graph G by using Kk+2-identification to combine G′k with k+ 6 copies of Ki+1, each

time using a different vertex of degree k + 2 in G′k. It is easy to arrange matters so

that all vertices of degree higher than k + 2 in G′k are used at least once in Kk+2-

identification. To see that G is nontraceable, note that G contains a vertex cutset

of k+ 4 vertices (the k+ 4 vertices of degree greater than k+ 2 in G′k), the removal

of which breaks G into k + 6 components.

It is already known that in a connected LH graph the detour order can be a

vanishing fraction of the order of the graph ([16], Theorem 3.6.3). A similar result

is possible for LkH graphs that are LmC for m = 0, 1, ..., k − 1. To prove this I will

need the following two lemmas.

Lemma 4.3.29. Let Td be a tree of height d, such that all leaves are at height d,

and all vertices that are not leaves have degree r ≥ 2. Let T ′d be a subgraph of Td

obtained by starting at the root vertex and excluding one branch of Td (and all its

subbranches) at each vertex. Then limd→∞
n(T ′

d)

n(Td)
= 0.

Proof. Let the root vertex of Td be v0 and let the set of vertices in V (Td) at distance

j from v0 be {vj,1, vj,2, . . . , vj,rj}. Then n(Td) =
∑d

i=0 r
i and n(T ′d) =

∑d
i=0(r − 1)i.

It follows that

lim
d→∞

n(T ′d)

n(Td)
= lim

d→∞

∑d
i=0(r − 1)i∑d

i=0 r
i

= 0
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Corollary 4.3.30. If each vertex of Td in Lemma 4.3.29 is replaced by a connected

graph of m vertices, the result still holds.

Proof. This simply yields limd→∞
n(T ′

d)

n(Td)
= limd→∞

m
∑d

i=0(r−1)i

m
∑d

i=0(r)i
and the result follows

as before.

Theorem 4.3.31. For k > 1, if Gn is an LkH graph of order n that is LmC,

m = 0, 1, . . . , k− 1 with the smallest possible detour order Dn, then limn→∞
Dn

n
= 0.

Proof. We will show how to construct a family LkH of graphs for which limn→∞
Dn

n
=

0. Use Kk+2-identification to combine two copies of Kk+3, resulting in a graph Hk

of order k + 4. Let u, v be the two nonadjacent vertices in Hk. Then 〈N(v)〉 =

〈N(u)〉 = 〈V (Wk)〉 ∼= Kk+2, so each of u and v lies in k + 2 distinct copies of Kk+1.

Now use Kk+2-identification to add 2(k + 2) vertices to V (Hk) by combining Hk

with 2(k + 2) copies of Kk+3 to create the graph Xk. This is done using each of the

k + 2 distinct sets of vertices that include u and k + 1 of its neighbours, and the

k + 2 distinct sets of vertices that include v and k + 1 of its neighbours. Label the

vertices that have been added in this way {u1, u2, . . . , uk+2} and {v1, v2, . . . , vk+2}

where {u1, u2, . . . , uk+2} ⊂ N(u) and {v1, v2, . . . , vk+2} ⊂ N(v). Now for each ui

i = 1, 2, . . . , k + 2, add k + 1 vertices to the graph by successively combining the

graph with k + 1 copies of Kk+3, each time including ui and the latest vertices

that have been added in the set that is used for Kk+2-identification. This results

in ui lying in a Kk+2, call it Ui, that includes a vertex of minimum degree, which

implies that Ui can be used in Kk+2-identification. The same is done for each vi

i = 1, 2, . . . , k + 2. The resulting graph is labeled G0. Figure 4.15 shows G0 for

k = 2. From Theorem 4.3.11 if follows that G0 is an LkH graph that is LmC,

m = 0, 1, . . . , k − 1.

G0 has vertex cutset V (Hk) of order k + 4, the removal of which results in a

graph consisting of U1, U2, . . . , Uk+2, V1, V2, . . . , Vk+2, and none of these subgraphs

is connected to any of the others. It follows that a longest path in G0 can only

include vertices from at most k+ 5 of these subgraphs. The graph G1 is constructed

from G0 and and a further 2k + 4 copies of G0, labeled G0,1, G0,2, . . . , G0,2k+4. The

subgraphs in G0,i, i = 1, 2, . . . , 2k + 4 are labeled in the same way as in G0, except

that the subscript will be preceded by the subscript of the graph. For instance, the
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subgraph in G0,i corresponding to U4 in G0 is labeled Ui,4. For i = 1, 2, . . . , k + 2,

identify Ui in G0 with Ui,i in G0,i and identify Vi in G0 with Vi,i in G0,i+k+2. Since

a longest path in G0 can only include vertices from at most k + 5 of the elements

of U1, U2, . . . , Uk+2, V1, V2, . . . , Vk+2, if follows that only vertices from k + 5 of the

graphs G0,1, G0,2, . . . , G0,2k+4 can have vertices on any given longest path in G1.

In the graph G1 each Ui,j and Vi,j, i, j = 1, 2, . . . , k + 2, i 6= j subgraph can be

used to combine G1 with another copy of G0 to create the graph G2. This process

can continue indefinitely. This creates a tree-like structure, where each node is

represented by a copy of Hk. Since |Hk| = k+ 4 and each Hk is adjacent to (2k+ 4)

Kk+2 subgraphs (the subgraphs represented by Uj,i and Vj,i), it follows that at each

node of the tree-like structure a longest path in Gj misses (2k+4)−(k+5) branches.

From Corollary 4.3.30 the result follows.

U4 

U3 U2 

U1 

V1 V4 

V3 V2 

u 

v 

Figure 4.15: The graph G0 used in Theorem 4.3.31.

The following two theorems are intuitively obvious, but are included for the

record.

Theorem 4.3.32. Let G be a nontraceable LkH graph that is LmC, m = 0, 1, . . . , k−

1 of order n with the smallest possible size Sn. Then limn→∞
Sn

|E(Kn)| = 0.

Proof. Consider the order 10 + 2k nontraceable LkH graph G′ that is LmC, m =

0, 1, . . . , k − 1 constructed in the proof of Theorem 4.3.23. |E(G′)| = (k + 2)(k +

1)/2 + 2(k + 2) + (k + 6)(k + 2) = (k + 2)(3k + 17)/2. Use Kk+2-identification

to combine G′ with copies of itself in a long chain to create the graph Hi where

i is the number of copies of G′ that have been combined. Then |E(Hi)| = i(k +

2)(3k+ 17)/2− (i− 1)(k+ 2)(k+ 1)/2 = i(k+ 2)(2k+ 16)/2 + (k+ 2)(k+ 1)/2, and
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V (Hi) = i(2k+10)− (i−1)(k+2) = i(k+8)+(k+2). So we have limn→∞
|E(Hi)|
|E(Kn)| =

limi→∞
i(k+2)(2k+16)+(k+2)(k+1)

(i(k+8)+(k+2))(i(k+8)+(k+1))
= 0.

Theorem 4.3.33. Let G be a nontraceable LkH graph that is LmC, m = 0, 1, . . . , k−

1 of order n with the greatest possible size Sn. Then limn→∞
Sn

|E(Kn)| = 1.

Proof. Consider the order 10 + 2k nontraceable LkH graph G′ that is LmC, m =

0, 1, . . . , k − 1 constructed in the proof of Theorem 4.3.23. |E(G′)| = (k + 2)(k +

1)/2 + 2(k + 2) + (k + 6)(k + 2) = (k + 2)(3k + 17)/2 and |V (G)| = 2k + 10. Use

Kk+2-identification to combine G′ with Ki to create the graph H. Then |E(H)| =

(k + 2)(3k + 17)/2 + i(i − 1)/2 − (k + 2)(k + 1)/2 = (i2 − i + 2k2 + 20k + 32)/2

and |V (H)| = 2k + 10 + i − (k + 2) = k + 8 + i. So we have limn→∞
|E(H)|
|E(Kn)| =

limi→∞
(i2−i+2k2+20k+32)

(i+k+8)(i+k+7)
= 1.
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Theorem 3.3.4

Theorem Let G be a connected nonhamiltonian LH graph of order n = 12. Then

∆(G) = 9.

Proof. Let w be a vertex in V (G) of maximum degree ∆, and letN(w) = {v1, v2, . . . , v∆},

where the vertices are numbered such that C = v1v2 . . . v∆v1 is a Hamilton cycle in

〈N(w)〉. Let X = {x1, x2, . . . , x12−∆−1} be the vertices not in N [w]. Until indicated

to the contrary, assume that there are no edges between vertices in X.

We start by making some claims (note that if |X| = 3 then ∆ = 8). For

convenience, the subgraphs forbidden by the claims to follow are shown in Figure

A.1.

Claim 1: If |X| = 3, then if {vi, vi+1} ⊂ N(xk), if follows that {vj, vj+1} 6⊂ N(xl),

i 6= j, k 6= l, k, l ∈ {1, 2, 3}.

Proof of Claim 1: Let v1, v2 ∈ N(x1) and vi, vi+1 ∈ N(x2), where i ≥ 2 and let

vk, vl ∈ N(x3), where k, l ∈ {1, 2, . . . ,∆}, l 6= k. There are two cases to consider.

Case1. If k ∈ {2, 3, . . . , i} and l ∈ {1, i+1, i+2, . . . ,∆}. Then v1x1v2v3 . . . vk−1wvl−1

vl−2 . . . vi+1x2 vivi−1 . . . vkx3vlvl+1 . . . v∆v1 is a Hamilton cycle in G.

Case 2. If k, l ∈ {2, 3, . . . , i} then v1x1v2v3 . . . vkx3vlvl−1 . . . vk+1w vl+1vl+2 . . . vix2

vi+1vi+2 . . . v∆v1 is a Hamilton cycle in G (here we assumed l > k).

By symmetry, and since δ(G) ≥ 3, the result follows.

Claim 2: If ∆(G) ≤ 8 then |N(vi) ∩X| ≤ 2, i ∈ {1, 2, . . . , 8}.

Proof of Claim 2: Let {x1, x2, x3} ⊂ N(vi). Since {x1, x2, x3} is an independent

set, a Hamilton cycle in 〈N(vi)〉 contains at least four vertices in N(w) ∩ N(vi).

∆(G) ≤ 8 implies that ∆(G) = 8 and that say, x1 ∈ N(vi−1) and say, x2 ∈ N(vi+1),
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which is counter to Claim 1.

Claim 3: If |X| = 3, {vi, vi+1} ⊂ N(x1), and vj ∈ N(x2), i 6= j, then vj+1 /∈

N(x3).

Proof of Claim 3: Without loss of generality let {v∆, v1} ⊂ x1, let x2 ∼ vi and

x3 ∼ vi+1, i 6= ∆, and let vk ∼ x2 and let vl ∼ x3.

We know from Claim 1 that x2 6∼ vi+1 and x3 6∼ vi. By symmetry there are three

cases to consider.

Case 1: k ∈ {1, 2, . . . , i−1} and l ∈ {i+2, i+3, . . . ,∆}. Then v1v2 . . . vkx2vivi−1 . . .

vk+1wvl−1vl−2 . . . vi+1x3vlvl+1 . . . v∆x1v1 is a Hamilton path in G.

Case 2: k, l ∈ {i+2, i+3, . . . , v∆}, k > l. Then v1v2 . . . vix2vkvk−1 . . . vlx3vi+1vi+2

. . . vl−1wvk+1vk+2 . . . v∆x1v1 is a Hamilton path in G.

Case 3: k, l ∈ {i+2, i+3, . . . , v∆}, l > k. Then v1v2 . . . vix2vkvk+1 . . . vlx3vi+1vi+2

. . . vk−1wvl+1vl+2 . . . v∆x1v1 is a Hamilton path in G.

Claim 4: If |X| = 3, then xjvixkvi+1xl, j, k, l ∈ {1, 2, 3}, j 6= k 6= l, is not a path

in G.

Proof of Claim 4: Without loss of generality let x1v1x2v2x3 be a path in G. By

Claim 1, x1 6∼ v8 and x3 6∼ v3. If x1 ∼ v3, then v3x1v1x2v2x3 is a path in G, and since

N [w] is traceable between any two elements ofN(w) and δ(G) ≥ 3, G is Hamiltonian.

Similarly, x3 6∼ v8. Therefore x1 and x3 each have at least two neighbours in

{v4, v5, v6, v7} and it follows from Claims 1 and 3 that x1 and x3 have the same

two neighbours in {v4, v5, v6, v7}. By symmetry we may assume the neighbours are

either v4 and v6 or v4 and v7, so that we may assume that v4 ∼ x1 and v4 ∼ x3. But

x2 also has at least one additional neighbour. If x2 ∼ v3, v1v8v7v6v5wv3x2v2x3v4x1v1

is a Hamilton cycle in G. If x2 ∼ v5, v1x1v4x3v2v3wv8v7v6v5x2v1 is a Hamilton cycle

in G. If x2 ∼ v8, v1x1v4x3v2v3wv5v6v7v8x2v1 is a Hamilton cycle in G. Therefore

x2 must be adjacent to either v6 or v7. If x2 ∼ v6, then x1 ∼ v7 and x3 ∼ v7 by

Claim 2. Then v1v8v7x1v4x3v2v3wv5v6x2v1 is a Hamilton cycle in G. If x2 ∼ v7, then

x1 ∼ v6 and x3 ∼ v6 and v1v8v7x2v2v3wv5v4x3v6x1v1 is a Hamilton cycle in G. This

completes the proof of Claim 4.

Claim 5: If |X| = 3, then it is not possible that both {vi, vi+1, vi+2} ⊂ N(xj) and

{vi, vi+2} ⊂ N(xk), j 6= k.

Proof of Claim 5: Without loss of generality let {v1, v2, v3} ⊂ N(x1) and {v1, v3} ⊂
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N(x2). By Claim 2, x3 6∼ v1 and x3 6∼ v3. By Claim 3, x3 6∼ v2, x3 6∼ v8 and x3 6∼ v4.

Since δ(G) ≥ 3, {v5, v6, v7} ⊂ N(x3), but that is against Claim 1.

Claim 6: If |X| = 3, then it is not possible that both {vi, vi+1, vi+2} ⊂ N(xj) and

{vi, vi+3} ⊂ N(xk), j 6= k.

Proof of Claim 6: Without loss of generality let {v1, v2, v3} ⊂ N(x1) and {v1, v4} ⊂

N(x2). By Claim 2, x3 6∼ v1 and and by Claim 3, x3 6∼ v2, x3 6∼ v3, and x3 6∼ v8.

Since δ(G) ≥ 3, x3 has 3 neighbours in {v4, v5, v6, v7}, but that is against Claim 1.

Claim 7: If |X| = 3, then it is not possible that {vi, vi+1, vi+2} ⊂ N(xj), vi+1 ∈

N(xk), and vi+3 ∈ N(xl) j 6= k 6= l.

Proof of Claim 7: Without loss of generality let {v1, v2, v3} ⊂ N(x1), v2 ∼ x2,

and v4 ∼ x3. By Claim 1, x3 6∼ v3 and x3 6∼ v5, by Claim 2, x3 6∼ v2, and by

Claim 3 x3 6∼ v1. Therefore by Claim 1, x3 ∼ v6 and x3 ∼ v8. By Claim 1 x2 6∼ v1

and x2 6∼ v3, by Claim 3 x2 6∼ v5 and x2 6∼ v7, so x2 is adjacent to two vertices in

{v4, v6, v8}. If x2 ∼ v4, v1v2x2v4v5v6x3v8v7wv3x1v1 is a Hamilton cycle in G and if

x2 ∼ v6, v1v2x2v6v5v4x3v8v7wv3x1v1 is a Hamilton cycle in G. The claim follows.

Claim 8: If |X| = 3, then it is not possible that both {vi, vi+2} ⊂ N(xj) and

{vi+1, vi+3} ⊂ N(xk), j 6= k.

Proof of Claim 8: Without loss of generality let {v8, v2} ⊂ N(x1) and {v1, v3} ⊂

N(x2). By Claim 3 x3 is not adjacent to at least one of v1 and v2, so x3 must be

adjacent to at least two vertices in {v3, v4, v5, v6, v7, v8}, say vi and vj, i < j. Then a

Hamilton cycle can be found: v8x1v2v1x2v3v4 . . . vi x3vjvj−1 . . . vi+1wvj+1vj+2 . . . v8.

We will now systematically work our way through the possible graphs for which

∆(G) = 8 and |X| = 3, incrementing first the neighbours of x3, then the neighbours

of x2, and lastly the neighbours of x1. So we start with x1 being adjacent to v1, v2

and v3, and x2 being adjacent to v1. For the sake of brevity, the claims will only

be referred to by their numbers, so for example, Claim 1 will be referred to simply

as (1). Each iteration will be headed by the edges between X and N(w) that are

assumed to be in G in that iteration. Note that if xi ∼ vj is specified in the header of

the iteration, then vk /∈ N(xi) if k < j unless such edges are also explicitly specified

in the header of the iteration.

{v1, v2, v3} ⊂ N(x1), x2 ∼ v1. Note that v2, v3, v4, v8 /∈ N(x2) by (1), (5) and (6)

and v1, v2, v8 /∈ N(x3) by (2), (4) and (3). So by (1) we have N(x3) = {v3, v5, v7}.
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Claim 1 Claim 2 Claim 3 Claim 4 

Claim 5 Claim 6 Claim 7 Claim 8 

Claim 9 Claim 10 Claim 11 

or 

Claim 14 Claim 15 Claim 16 

Claim 16a Claim 17 Claim 18 Claim 19 

Claim 20 

or 

Claim 21 

x2 or x4 

x1 

Claim 22 

Figure A.1: Forbidden subgraphs according to the claims in the proof of Theorem

3.3.4. Note that for Claim 16a the claim is somewhat different: the subgraph is not

forbidden. There are no sketches for Claims 12 and 13.

102



Local Properties of Graphs

Then by (3) v6 /∈ N(x2) , so N(x2) = {v1, v5, v7}. Also, v4, v5, v7, v8 /∈ N(x1) by

(2) and (8). If v6 ∼ x1, then v1v2x1v6v5x2v7x3v3v4wv8v1 is a Hamilton cycle in G,

so N(x1) = {v1, v2, v3}. Now, since 〈N(v1)〉 is hamiltonian and d(x1) = d(x2) = 3 ,

and ∆(G) = 8, it follows that {v2, v3, v5, v7, v8} = N(v1)∩N(w). When we consider

〈N(v5)〉, by a similar argument we find that {v1, v3, v4, v6, v7} ⊂ N(v5). Note that if

the edge v4v6 is added the graph becomes hamiltonian: v1v2x1v3v4v6wv8v7x3v5x2v1.

Therefore a Hamilton cycle in 〈N(v5)〉 must include the path v3x3v7x2v1w. It is

then clear that it is not possible to extend the path to include both v4 and v6 and

end at v3. Therefore 〈N(v5)〉 is not hamiltonian, and the case is not possible.

We have now proved Claim 9: If |X| = 3 and {vi, vi+1, vi+2} ⊂ N(xj), then

vi /∈ N(xk), k 6= j.

{v1, v2, v3} ⊂ N(x1), x2 ∼ v2. By (9) v1, v3 /∈ N(x2) and v1, v3 /∈ N(x3). Also,

x3 6∼ v2 by (2), x3 6∼ v8 and x3 6∼ v4 by (7). Therefore N(x3) = {v5, v6, v7}, which is

counter to (1).

By (9) the next iteration to consider is

{v1, v2, v3} ⊂ N(x1), x2 ∼ v4. By previous cases, N(x2)∪N(x3) ⊂ {v4, v5, v6, v7, v8}.

Therefore by (1), N(x2) = N(x3) = {v4, v6, v8}. It follows that 〈N(v6)〉 is not hamil-

tonian, since |N(v6) ∩ (N(x2) ∩N(x3))| ≤ 2.

By (1) the next iteration to consider is

{v1, v2, v4} ⊂ N(x1), x2 ∼ v1. Now v1, v2, v8 /∈ N(x3) by (2), (4) and (3), so by

(1), N(x3) = {v3, v5, v7}. Then v2, v4, v6, v8 /∈ N(x2) by (3), so that x2 must have

two neighbours in {v3, v5, v7}. But if x2 ∼ v3, then v1v2x1v4v5v6wv8v7x3v3x2v1 is a

Hamilton cycle in G, and if x2 ∼ v5, then v1v2x1v4v3x3 v7v8wv6v5x2v1 is a Hamilton

cycle in G.

{v1, v2, v4} ⊂ N(x1), x2 ∼ v2. Now v1, v2, v3 /∈ N(x3) by previous case, (2) and

(3), so by (1) N(x3) = {v4, v6, v8}. Then v3, v4, v5, v7 /∈ N(x2) by (1), (2) and (3)

so N(x2) = {v2, v6, v8}. Note that v3, v6, v7, v8 /∈ N(x1) by (9), (2) and (8). Also,

x1 6∼ v5, otherwise v1x1v5wv7v6x3v4v3v2x2v8v1 is a Hamilton cycle in G. Therefore

N(x1) = {v1, v2, v4}. So, if 〈N(v4)〉 is hamiltonian, then {v1, v2, v6, v8} ⊂ N(v4),

which implies that {v1, v2, v3, v5, v6, v8, x1, x2, w} ⊂ N(v4), so that d(v4) ≥ 9.

{v1, v2, v4} ⊂ N(x1), x2 ∼ v3. Now x2 6∼ v4 by (1), and x3 6∼ v4 by (3), therefore

by (1), x3 ∼ v3. So by (1) and (3), x2 and x3 must share the same two neighbours in
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{v5, v6, v7, v8}. If the shared neighbours are v5 and v7, then v1v2x1v4v3x2v5x3v7v6wv8v1

is a Hamilton cycle in G. If the shared neighbours are v5 and v8, then v1v2v3x2v5x3v8

v7v6wv4x1v1 is a Hamilton cycle in G. If the shared neighbours are v6 and v8, then

v1v2v3x2v6x3v8v7wv5v4x1v1 is a Hamilton cycle in G. Therefore this case is not

possible.

{v1, v2, v4} ⊂ N(x1), x2 ∼ v4. Since by earlier cases, v1, v2, v3 /∈ N(x2) and

v1, v2, v3 /∈ N(x3), by (3) both x2 ∼ v4 and x3 ∼ v4, but that is contrary to (2).

By (1) the next iteration to consider is

{v1, v2, v5} ⊂ N(x1), x2 ∼ v1. Now v1, v2, v8 /∈ N(x3) by (2), (4) and (3). There-

fore N(x3) = {v3, v5, v7} by (3). Then v4, v5, v6, v8 /∈ N(x2) by (3), (2) and (1), so

that N(x2) must have two vertices in {v2, v3, v7}, so by (1), x2 ∼ v7. If x2 ∼ v2, then

v1v8v7v6wv4v3x3v5x1v2x2v1 is a Hamilton cycle in G. Therefore N(x2) = {v1, v3, v7}.

Note by an earlier case, x1 6∼ v3 and x1 6∼ v4. Also, x1 6∼ v8 by (8), and if

x1 ∼ v6, then v1v2x1v6v5v4wv8v7x3v3x2v1 is a Hamilton cycle in G. Therefore

N(x1) = {v1, v2, v5}. Now, since 〈N(v5)〉 is hamiltonian, it must be the case that

{v1, v2, v3, v7} ⊂ N(v5), which implies d(v5) ≥ 9.

{v1, v2, v5} ⊂ N(x1), x2 ∼ v2. Now v1, v2, v3 /∈ N(x3) by (2) and (3). Therefore

by (1), N(x3) = {v4, v6, v8}. By (1) and (3) v3, v5, v7 /∈ N(x2). SoN(x2) contains two

vertices in {v4, v6, v8}. If x2 ∼ v4, then v1v2x2v4v3wv7v8x3v6v5x1v1 is a a Hamilton

cycle in G. If x2 ∼ v6, then v1v2x2v6v7v8x3v4v3 wv5x1v1 is a Hamilton cycle in G.

So this case is not possible.

{v1, v2, v5} ⊂ N(x1), x2 ∼ v3. Now x2 and x3 are not adjacent to v1 or v2 by

earlier cases, and x2 6∼ v4 by (1) and x3 6∼ v4 by (3), and by (3) we then get that

x3 ∼ v3. It follows by (1) and (3) that x2 and x3 must both have the same two

neighbours in {v5, v6, v7, v8}, and since x1 ∼ v5, x2 and x3 must both be adjacent to

v6 and v8. But then v1v2v3x2v6x3v8v7wv4v5x1v1 is a Hamilton cycle in G.

{v1, v2, v5} ⊂ N(x1), x2 ∼ v4. By earlier cases and (1) and (3), N(x2) = N(x3) =

{v4, v6, v8}. But then v1v2v3v4x2v6x3v8v7wv5x1v1 is a Hamilton cycle in G.

By (1), (3) and symmetry, this exhausts the possibilities where x1 has two suc-

cessive neighbours in N(w). So for the remainder of this part of the proof, it can be

assumed that no vertex in X has two successive neighbours in N(w). We’ll refer to

this as Claim 10. By (10) the next iteration is
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{v1, v3, v5} ⊂ N(x1), {v1, v3, v5} ⊂ N(x2). By (8), x3 is not adjacent to more

than one of v2 and v4, so by (2) and (10), x3 ∼ v6 and x3 ∼ v8 and x3 is adjacent to

one of v2 and v4. If x3 ∼ v4, then v1v2wv4x3v8v7v6v5x1v3x2v1 is a Hamilton cycle in

G. By symmetry, x3 6∼ v2, implying that d(x3) ≤ 2.

{v1, v3, v5} ⊂ N(x1), {v1, v3, v6} ⊂ N(x2). Note that if x3 ∼ v2, then by (8) x3 6∼

v4 and x3 6∼ v8, and by (10) x3 ∼ v5 and x3 ∼ v7. Then v1v2x3v5v4wv8v7v6x2v3x1v1 is

a Hamilton cycle in G. Therefore x3 6∼ v2, and by (10) and (2) N(x3) = {v4, v6, v8}.

But then v1v2v3x1v5v4wv7v8x3v6x2v1 is a Hamilton cycle in G.

{v1, v3, v5} ⊂ N(x1), {v1, v3, v7} ⊂ N(x2). Call this Subgraph 1 for later refer-

ence.

Note that if x3 ∼ v2, then x3 6∼ v4 and x3 6∼ v8 by (8) and if x3 ∼ v6, then

v1v2x3v6v5v4wv8v7x2v3x1v1 is a Hamilton cycle in G. Therefore, if x3 ∼ v2, then

N(x3) = {v2, v5, v7}. Note by earlier cases and by (2), x1 and x2 can have no

additional neighbours. Since x1 and x3 share only v5 as a common neighbour, the

requirement that 〈N(v5)〉 be hamiltonian implies that d(v5) ≥ 9.

If x3 6∼ v2, then by (10) and (2) N(x3) = {v4, v6, v8}, and then v1v2v3x1v5v4wv6x3

v8v7x2v1 is a Hamilton cycle in G.

Note that by (10), if x2 ∼ v1, then x2 6∼ v8, so the next case to consider is

{v1, v3, v5} ⊂ N(x1), {v1, v4} ⊂ N(x2). Note that v5, v6, v8 /∈ N(x2) by (10)

and (8), so that N(x2) = {v1, v4, v7}. If x3 ∼ v2, then by (8) x3 6∼ v4 and

x3 6∼ v8, so that N(x3) = {v2, v5, v7}, and then v1v2x3v5v6wv8v7x2v4v3x1v1 is a

Hamilton cycle in G so it follows that x3 6∼ v2. If x3 ∼ v3 then x3 must have

two neighbours in {v5, v6, v7, v8}, but x3 ∼ v6 results in v1v2v3x3v6wv8v7x2v4v5x1v1

and x3 ∼ v8 results in v1v2v3x3v8v7x2v4wv6v5x1v1 as Hamiton cycles in G. There-

fore N(x3) = {v3, v5, v7}. This subgraph (excluding x2) is isomorphic to the graph

labeled Subgraph 1.

Note that by (10), if x2 ∼ v1, then x2 6∼ v8, so the next case to consider is

{v1, v3, v5} ⊂ N(x1), {v1, v5} ⊂ N(x2). In this case x2 6∼ v6 and x2 6∼ v8 by (10),

therefore N(x2) = {v1, v5, v7}. Now, if x3 ∼ v2, then x3 6∼ v1 by (2), x3 6∼ v3 by (10),

x3 6∼ v4 by (8) and x3 6∼ v5 by (2), so then x3 ∼ v6 and x3 ∼ v8, but this is counter

to (8). Therefore, x3 6∼ v2. The same argument shows that x3 6∼ v3. Therefore it

must be that N(x3) = {v4, v6, v8}, but that is counter to (8).
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{v1, v3, v5} ⊂ N(x1), {v1, v6} ⊂ N(x2). By (10) x2 can’t be adjacent to v7 or v8,

so this case is not possible.

We can now increment x2’s first neighbour:

{v1, v3, v5} ⊂ N(x1), x2 ∼ v2. Now v3, v4, v8 /∈ N(x2) by (10) and (8), so that

N(x2) = {v2, v5, v7}. The same argument shows that if x3 ∼ v2, then N(x3) =

{v2, v5, v7}. But this is counter to (2). Therefore x3 6∼ v2. If x3 ∼ v3 or x3 ∼ v4,

then by (2) and (10) {v6, v8} ⊂ N(x3) and v1v2v3v4wv6x3v8v7x2v5x1v1 is a Hamilton

cycle in G. Therefore this case is not possible.

{v1, v3, v5} ⊂ N(x1), x2 ∼ v3. By previous cases and (2) and (10), N(x3) =

{v4, v6, v8}, but this is counter to (8).

{v1, v3, v5} ⊂ N(x1), x2 ∼ v4. By (10) N(x2) = {v4, v6, v8} which is counter to

(8).

We must therefore increment the neighbours of x1. Based on the cases studied

up to this point, we can add another claim.

Claim 11: No vertex in X can be adjacent to vi, vi+2 and vi+4.

By (10) the next iteration is

{v1, v3, v6} ⊂ N(x1), {v1, v3} ⊂ N(x2). By (10) and (11), v4, v5, v7, v8 /∈ N(x2).

Therefore x2 ∼ v6, and by (10) and (2), x3 is adjacent to one of {v4, v5} and to one

of {v7, v8}, implying that x3 ∼ v2 by (2), so that x3 6∼ v4 by (8). Then x3 ∼ v5, and

by (8) x3 6∼ v7 , so that x3 ∼ v8, but this is also against (8).

{v1, v3, v6} ⊂ N(x1), {v1, v4} ⊂ N(x2). If x3 ∼ v2, then v3, v4, v8 /∈ N(x3) by

(8) and (10), so that N(x3) = {v2, v5, v7}. Then by (8), x2 6∼ v6, so that N(x2) =

{v1, v4, v7}, but then v1x1v3v2x3v7v8wv6 v5v4x2v1 is a Hamilton cycle in G. Therefore

x3 6∼ v2. It follows that x3 ∼ v3, else N(x3) = {v4, v6, v8}, which is counter to

(11). Then if x3 ∼ v5, v1v2wv8v7v6x1v3x3v5v4x2v1 is a Hamilton cycle in G. So

{v6, v8} ⊂ N(x3). But then v1v2v3x1v6x3v8v7wv5v4x2v1 is a Hamilton cycle in G.

{v1, v3, v6} ⊂ N(x1), {v1, v5} ⊂ N(x2). From (10) we know that the remaining

neighbour of x2 is v7. If x3 ∼ v2, then by (10), x3 6∼ v3 and by (8) x3 6∼ v4

and x3 6∼ v8, so by (10) we get N(x3) = {v2, v5, v7}, but then v1v2x3v5v4v3x1v6

wv8v7x2v1 is a Hamilton cycle in G, so x3 6∼ v2. Now if x3 ∼ v3 and x3 ∼ v8,

then v1v2v3x3v8v7x2v5v4wv6x1v1 is a Hamilton cycle in G. If x3 6∼ v8, then by (10)

N(x3) = {v3, v5, v7}, but this is counter to (11), so x3 6∼ v3, and by (10) and (11),
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v4 can’t be the first neighbour of x3, so we must increment the neighbours of x2.

Note that if the second neighbour of x2 is v6, then the third neighbour must be

v8, which is counter to (10). By (10) the next iteration is

{v1, v3, v6} ⊂ N(x1), x2 ∼ v2. By (10), x2 6∼ v3 and by (8), x2 6∼ v4 and x2 6∼ v8,

so it follows that {v2, v5, v7} = N(x2). If x3 ∼ v2 then by (10) and (8), N(x3) =

{v2, v5, v7} and v1v8v7x3v2x2v5v4 v3wv6x1v1 is a Hamilton cycle in G, and so x3 6∼ v2.

If x3 ∼ v3 and x3 ∼ v5, then v1v2x2v5x3v3v4wv8v7v6x1v1 is a Hamilton cycle in G,

and if x3 ∼ v3 and x3 ∼ v6, then v1v2x2v5v4wv8v7v6x3v3x1v1 is a Hamilton cycle

in G, so by (8) and (10) x3 6∼ v3. Then by (10) and (11) x3 6∼ v4, and therefore

x2 6∼ v5, so we have a contradiction.

{v1, v3, v6} ⊂ N(x1), x2 ∼ v3. In this case by (2) and (10) we must have N(x3) =

{v4, v6, v8}, which is counter to (11).

By (10) and (11) it is not possible that the first neighbour of x2 is v4, so we must

increment the neighbours of x1, but by symmetry all the possibilities have already

been exhausted. We have now completed the proof that if |X| = 3 and the vertices

in X are independent, and n(G) = 12, then ∆(G) 6= 8.

Note that the proof up to this point only depends on the fact that for an isolated

vertex x in X, there are at least three edges between N(w) and x, and that a

Hamilton cycle can go through x via any two of these edges. If the vertex x is

replaced by a pair with an edge between them, x1x2, the same holds. To see this,

note that local hamiltonicity requires that the two vertices x1 and x2 must have

at least two neighbours in N(w), say vi and vj, in common, and the requirement

of G being 3-connected implies that at least one of them, say x1, must have third

neighbour, say vk. Now a Hamilton cycle can go through x1x2 via any two of

these three edges: vkx1x2vi, vkx1x2vj, vix1x2vj. This means that if a section of

the proof holds for X consisting of m isolated vertices, the same proof will hold if

comp(X) = m, where one or more of the components of X consists of a K2, and the

other components of X are isolated vertices. We will refer to this as Claim 12.

By Claim 12 it follows the above proof for ∆ = 8 and |X| = 3 also holds for

∆ = 7 and comp(X) = 3, except that there are fewer cases to consider.

We now proceed to consider the case where ∆(G) = 8 and comp(X) = 2, that

is, the edge x1x2 is in E(G).
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We have some additional claims for this part of the proof:

Claim 13: From (12) it follows that x1 and x2 share at least two neighbours in

N(w) and |N(w) ∩N(x1) ∩N(x2)| ≥ 3.

Claim 14: If S is a Hamilton path of a component of X, then in G the path

viSvi+1 is not in any component in X, where the indices are taken modulo 8.

Proof of Claim 14: Since N [w] is traceable between any two vertices in N(w),

and δ(G) ≥ 3, the result follows.

Claim 15: For no vertex vi in N(w) do we have {x1, x2, x3} ⊂ N(vi).

Proof of Claim 15: If N(vi) ⊂ {x1, x2, x3}, then by Claim 14 vi−1 and vi+1 are

not adjacent to any vertices in X. Since comp(X) = 2, and 〈N(vi)〉 is hamiltonian,

it follows that |N(vi) ∩N(w)| ≥ 5 which implies that d(vi) ≥ 9.

Now, if {v1, v3} ⊂ N(x1) ∩ N(x2), then if x3 6∼ v2, then N(x3) = {v4, v6, v8},

but then v1x1x2v3v2wv7v6v5v4x3v8v1 is a Hamilton path in G. So v2 ∼ x3. But

then if vi is a second neighbour of x3, i ∈ {4, 5, 6, 7, 8}, v1x1x2v3v2x3vivi−1 . . . v4

wvi+1vi+2 . . . v8v1 is a Hamilton path in G. So the neighbours that x1 and x2 have

in common are not at a distance of two in C.

If {v1, v4} ⊂ N(x1) ∩N(x2), then by (14) and (15) x3 ∼ v2 or x3 ∼ v3. Without

loss of generality let x3 ∼ v2. Then x3 must have a second neighbour vi, i ∈

{5, 6, 7, 8}. But then v1x1x2v4v3v2x3vivi−1 . . . v5w vi+1vi+2 . . . v8v1 is a Hamilton path

in G. Therefore the neighbours that x1 and x2 have in common are at a distance of

four in N(w).

If v1 and v5 are the two neighbours that x1 and x2 have in common and x3 is

adjacent to any of v2, v4, v6 and v8 then a Hamilton cycle in G can be found in

the same way as in the previous case. But then x3 can have only two neighbours.

Therefore it is not possible that ∆(G) = 8 if comp(X) = 2, and G is obviously

hamiltonian if comp(X) = 1.

This leaves the case where ∆(G) = 7 and |X| = 4. First we consider the subcase

where comp(X) = 4, and we make some fresh claims.

Claim 16: For i ∈ {1, 2, . . . , 7}, |N(vi) ∩ V (X)| ≤ 2 and if {xj, xk} ⊂ N(vi),

j 6= k, then vi−1 ∼ xj and/or vi+1 ∼ xj (the latter requirement will be referred to

as (16a)).

Proof of Claim 16: This follows directly from the fact that the vertices in X are
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independent, that 〈N(vi)〉 is hamiltonian, and that ∆(G) = 7.

Claim 17: If {vi, vi+1} ⊂ N(xq) and {vj, vj+1} ⊂ N(xp), i 6= j, then if {vk, vk+1} ⊂

N(xr), q 6= p 6= r, then k ∈ {i, j}.

Proof of Claim 17: The result follows from (1) and the facts that δ(G) ≥ 3 and

N [w] is traceable between any two vertices in N(w).

Claim 18: If {vi, vi+1} ⊂ N(xq) and {vj, vj+1} ⊂ N(xp) where i 6= j, and xr ∼ vk,

and xt ∼ vk+1, p 6= q 6= r 6= t, then k ∈ {i, j}.

Proof of Claim 18: Again the result follows from (1) and the facts that δ(G) ≥ 3

and N [w] is traceable between any two vertices in N(w).

Claim 19: There is no subgraph of G in which {vi, vi+1} ⊂ N(xp), {vi} ⊂ N(xq),

{vj, vj+1} ⊂ N(xr), and {vj} ⊂ N(xt), i 6= j, p 6= q 6= r 6= t.

Proof of Claim 19: If {v1, v2} ⊂ N(x1), {v1} ⊂ N(x2), {v3, v4} ⊂ N(x3) and

{v3} ⊂ N(x4), then x2 6∼ v7 and x4 6∼ v2 by (17) and x2 6∼ v2 and x4 6∼ v7 by (18)

and x2 6∼ v3 and x4 6∼ v1 by (17). Therefore x2 and x4 must each have at least

two neighbours in {v4, v5, v6}, so by (17), N(x2) = {v1, v4, v6}, which means that by

(16) N(x4) = {v3, v5, v6}, which is counter to (17). This scenario is therefore not

possible.

Let {v1, v2} ⊂ N(x1), {v1} ⊂ N(x2), {v4, v5} ⊂ N(x3), {v4} ⊂ N(x4). Then

x2 6∼ v7 and x4 6∼ v3 by (17) and x2 6∼ v3 and x4 6∼ v7 by (18). Therefore by (16)

and (17) x2 ∼ v2, and by (16) {v5, v6} ⊂ N(x4), which is counter to (17).

By symmetry, this exhausts the possibilities and the proof of the claim is com-

plete.

Claim 20: There is no subgraph of G in which {xp, xq} ⊂ N(vi), {xr, xt} ⊂ N(vj),

i 6= j, p 6= q 6= r 6= t.

Proof of Claim 20: Note that if {x1, x2} ⊂ N(v1), then by (16a) without loss

of generality let v2 ∼ x1 and then {x3, x4} 6⊂ N(v2) by (16a). If {x1, x2} ⊂ N(v1),

v2 ∼ x1 and {x3, x4} ⊂ N(v3) then by (16) and (19) we can say without loss of

generality that v2 ∼ x3. Then by (16) v2 6∼ x2, v3 6∼ x2, by (17) v7 6∼ x2 and by (18)

v4 6∼ x2. Then {v5, v6} ⊂ N(x2), which is counter to (17).

Now if {x1, x2} ⊂ N(v1), v2 ∼ x1 and {x3, x4} ⊂ N(v4) then by (16a) and (19)

we can say without loss of generality that v3 ∼ x3. Then v1 6∼ x4 by (1), v5 6∼ x4 by

(17) and v7 6∼ x4 by (18), so that by (17) x4 ∼ v6 and x4 is adjacent to one of v2
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and v3. Then by (18) v5 6∼ x2 and by (17) v7 6∼ x2 and by (16) v4 6∼ x2, so that by

(17) x2 ∼ v6 and x2 is adjacent to one of v2 and v3. But then one of v2 and v3 has

three neighbours in V (X), counter to (16).

Now if {x1, x2} ⊂ N(v1), v2 ∼ x1 and {x3, x4} ⊂ N(v5) then by (16a) and (19)

we can say without loss of generality that v4 ∼ x3. Then by (16) v1 6∼ x4, by (2)

v6 6∼ x4, and by (18) v7 6∼ x4, so that by (17) {v2, v4} ⊂ N(x4), which implies by

(16) and (17) that x2 ∼ v3, which is counter to (18).

Now if {x1, x2} ⊂ N(v1), v2 ∼ x1 and {x3, x4} ⊂ N(v6) then by (16a) and (19)

we can say without loss of generality that v5 ∼ x3. By (17) x2 6∼ v7 and x4 6∼ v7.

Thus by (16) x2 and x4 must each have two neighbours in {v2, v3, v4, v5}, and by

(17) and (18) these neighbours may not be successive in C. This implies that x2 and

x4 must have the same two neighbours in {v2, v3, v4, v5}. But this is not possible by

(16) and (18).

Now if {x1, x2} ⊂ N(v1), v2 ∼ x1 and {x3, x4} ⊂ N(v7) then by (16a) and (19)

we can say without loss of generality that v6 ∼ x3. This is counter to (18).

By symmetry, this exhausts the possibilities and the proof of the claim is com-

plete.

We will now attempt to allocate three edges to N(w) from each vertex in X.

We will rename the vertices in N(w) to make it clear that the sequence of vertices

in a possible cycle is not relevant here: N(w) = {a, b, c, d, e, f, g}. Without loss

of generality (since there have to be twelve edges incident to the seven vertices in

N(w)), suppose ax1 and ax2 are edges in G. Then by (20) x3 and x4 can’t share

any neighbours.

Then if we assume that x1 and x2 do not share a second neighbour, we can

assume the following: N(x1) = {a, b, c} and N(x2) = {a, d, e}. Then if b ∼ x3, by

(20) x2 and x4 can’t share any neighbours, so N(x4) = {c, f, g}, which means that

x1 and x4 share a neighbour, so x2 and x3 do not share neighbours. Therefore there

is no possible third neighbour for x3. We can then conclude by symmetry that x1

and x2 do not share any neighbours with x3 and x4. But then the only possible

neighbours for x3 and x4 are f and g. Therefore x1 and x2 must share at least two

neighbours.

Now assume x1 and x2 are both adjacent to a and b. Then x3 and x4 still can’t
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have any neighbours in common, but there are only five vertices (c, d, e, f , g)

available for them to have as neighbours. So x1 and x2 can’t share more than one

neighbour. Therefore we conclude that if ∆(G) = 7 and comp(X) = 4, then G

cannot be nonhamiltonian and LH.

All that remains is to address the cases where ∆(G) = 7 and comp(X) < 4.

By (12) the only scenarios that we still have to address are the ones where

comp(X) ≤ 2 and none of the components of X is a connected pair.

Since G is obviously hamiltonian if X has only one component that can be traced

between two vertices that have distinct neighbours in N(w), there remain three cases

to consider: X contains either the path x2x3x4, or K3, or the claw K1,3. In all three

cases there is a two-path cover for X of which one of the paths is a singleton vertex,

call it x1, and the other path can be labeled x2x3x4. We start by making two new

claims. The proofs of the claims follow readily from the facts that N [w] is traceable

between any two vertices in N(w), δ(G) ≥ 3, and G is 3-connected, and are not

presented here.

Claim 21: x1 can’t have successive neighbours in C and if x2 ∼ vi, then x4 6∼ vi−1

and x4 6∼ vi+1.

Claim 22: If {vi, vi+2} ⊂ N(x1), then x2 6∼ vi+1 and x4 6∼ vi+1.

Case 1: X = {x1, x2x3x4}. By (21) we can say without loss of generality that

N(x1) = {v1, v3, v5}. By (22) it follows that v2, v4 /∈ N(x2) and v2, v4 /∈ N(x4). If

x2 ∼ v7, then v1, v6 /∈ N(x4) by (21) and if x4 ∼ v3, then v1v2v3x4x3x2v7v6wv4v5x1v1

is a Hamilton cycle in G, and if x4 ∼ v5, then v1v2v3v4wv6v7x2x3x4v5x1v1 is a

Hamilton cycle in G. Therefore, by symmetry, v6, v7 /∈ N(x2) and v6, v7 /∈ N(x4),

so that N(w) ∩ (N(x2) ∪ N(x4)) ⊂ {v1, v3, v5}. But each of x2 and x4 has at least

two neighbours in N(w), and if vi ∈ N(x1)∩N(x2)∩N(x4), then by (21) d(vi) ≥ 9.

Therefore this case is not possible.

Case 2: X = {x1, K3}. From the argument in Case 1 it follows that N(x1) =

{v1, v3, v5}, and that without loss of generality we can claim that x2 ∼ v1, x3 ∼ v3

and x4 ∼ v5. But now if we consider 〈N(v1)〉 it is clear that since x1 6∼ x2, local

hamiltonicity requires d(v1) ≥ 8.

Case 3: X = K1,3. Let x3 be the vertex of degree 3 in X. By (21) and symmetry

in X it follows that no vertex in {x1, x2, x4} can be adjacent to successive vertices
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in C, and if xj ∼ vi, then xk 6∼ vi+1, j, k ∈ {1, 2, 4}, j 6= k. So without loss

of generality, we can say that the vertices in {v1, v3, v5} are each adjacent to two

elements of {x1, x2, x4}. Since {x1, x2, x4} is an independent set, the hamiltonicity

of say, 〈N(v1)〉, requires that d(v1) ≥ 8.

This completes the proof.
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[12] V. Chvátal, Hamiltonian cycles, in: E.L. Lawler, J.K. Lenstra, A.H.G. Rin-

nooy Kan, D.B. Shmoys (Eds.), The Travelling Salesman problem: A Guided

Tour of Combinatorial Optimization, Wiley-Intersci. Ser. Discrete Math., Wi-

ley, Chichester, 1985, 403-429.

[13] L. Clark, Hamiltonian properties of connected locally connected graphs,

Congr. Numer. 32 (1981) 199-204.

[14] M. B. Dillencourt, An upper bound on the shortness exponent of l-tough,

maximal planar graphs, Discrete Mathematics 90 (1991) 93-97.

[15] G. A. Dirac, On rigid circuit graphs, Abhandlungen aus dem Mathematischen

Seminar der Universität Hamburg, 25 (1961) 71-76.

[16] R. Entringer and S. MacKendrick, Longest paths in locally hamiltonian

graphs, Congressus Numerantium 35 (1982) 275-281.

[17] P.R. Goodey, Hamiltonian Paths on 3-Polytopes, J. Combinatorial Theory

Series B 12 (1972) 143-152.

[18] A. Goldner and F. Harary, Note on a smallest nonhamiltonian maximal pla-

nar graph, Bull Malaysian Math. Soc. 6(1) (1975) 41-42.

[19] V.S. Gordon, Y.L. Orlovich, C.N. Potts and V.A. Strusevich, Hamiltonian

properties of locally connected graphs with bounded vertex degree, Discrete

Applied Math. 159 (2011) 1759-1774.

[20] G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13

(1989) 257-260.

[21] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990) 59-72.

[22] L. Markenzon, C.M. Justel and N. Paciornik, Subclasses of k-trees: charac-

terization and recognition, Discrete Applied Mathematics 154 (2006) 818 –

825.

114



Local Properties of Graphs

[23] P.B. Kikust, The existence of a hamiltonian cycle in a regular graph of degree

5 [Russian, Latvian summary], Latvian Mathematical Yearbook 16 (1975)

33-38.

[24] T. Nishizeki, A 1-tough nonhamiltonian maximal planar graph, Discrete

Mathematics 30 (1980) 305-307.

[25] D. Oberly and P. Sumner, Every locally connected nontrivial graph with no

induced claw is hamiltonian, Journal of Graph Theory 3 (1979) 351-356.

[26] C.M. Pareek, On the maximum degree of locally Hamiltonian non-

Hamiltonian graphs, Utilitas Mathematica 23 (1983) 103-120.
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