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Summary

We say a graph is locally P if the induced graph on the neighbourhood of every
vertex has the property P. Specifically, a graph is locally traceable (LT) or locally
hamiltonian (LH) if the induced graph on the neighbourhood of every vertex is
traceable or hamiltonian, respectively. A locally locally hamiltonian (L*H) graph
is a graph in which the graph induced by the neighbourhood of each vertex is an
LH graph. This concept is generalized to an arbitrary degree of nesting, to make it
possible to work with L¥ H graphs. This thesis focuses on the global cycle properties
of LT, LH and L*H graphs. Methods are developed to construct and combine such

graphs to create others with desired properties.

It is shown that with the exception of three graphs, LT graphs with maximum
degree no greater than 5 are fully cycle extendable (and hence hamiltonian), but
the Hamilton cycle problem for LT graphs with maximum degree 6 is NP-complete.
Furthermore, the smallest nontraceable LT graph has order 10, and the smallest

value of the maximum degree for which LT graphs can be nontraceable is 6.

It is also shown that LH graphs with maximum degree 6 are fully cycle extend-
able, and that there exist nonhamiltonian LH graphs with maximum degree 9 or
less for all orders greater than 10. The Hamilton cycle problem is shown to be
NP-complete for LH graphs with maximum degree 9. The construction of r-regular
nonhamiltonian graphs is demonstrated, and it is shown that the number of vertices
in a longest path in an LH graph can contain a vanishing fraction of the vertices of
the graph.

Various properties of L* H graphs are investigated, and it shown that nonhamil-
tonian L*H graphs exist of order 9 + 2k for k¥ > 1. The Hamilton cycle problem
is shown to be NP-complete for L?H graphs with maximum degree 12, and NP-
complete for graphs that are both LH and L?H with maximum degree 13. The
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Local Properties of Graphs

NP-completeness of the Hamilton cycle problem for L*H graphs for higher values

of k is also investigated.

Key terms:
Graph theory; Hamilton cycle; Hamilton path; locally hamiltonian; locally

traceable; vertex degree; nonhamiltonian; nontraceable; graph order; NP-complete
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Chapter 1

Introduction

1.1 Definitions

Except where otherwise indicated, the definitions to follow can be found in Bondy
and Murty [9].

We limit ourselves to simple graphs, that is, graphs with at most one edge be-
tween any two vertices, no loops, and no directed edges. The set of edges of a
graph G is denoted by E(G) and the set of vertices by V(G). For any set S, |S] is
the cardinality of S. We call |V(G)| the order of a graph, and we often use n(G)
interchangeably with |V(G)|. We call |E(G)| the size of the graph. We can refer
to an edge between two vertices v and v as wv, and also use the notation u ~ v
to indicate that w and v are neighbours, while u ¢ v indicates that u and v are
not neighbours. We use N(v) to represent the open neighbourhood of a vertex v,
and Nv] for the closed neighbourhood. If there is room for ambiguity regarding to
which graph we’re referring, we use a subscript, for example, Ng(v).

A subgraph H of a graph G is a graph such that V(H) C V(G) and E(H) C
E(G). An induced subgraph on a set X of vertices in V(G) is the graph obtained
by starting with X and adding an edge between two vertices u and v in X if there
is an edge between v and v in G. This is written as (X). The graph G — X is the
graph obtained by removing the vertices in X from G and all the edges incident to
vertices in X.

The degree of a vertex v is the number of edges incident to v, and is denoted

by d(v). The maximum and minimum degrees of the vertices of G are denoted by
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Chapter 1

A(G) and 6(G), respectively, and if the graph we're referring to is clear from the
context, we may just use A and 0. We will refer to A(G) and 0(G) as the mazimum

degree and the minimum degree of G.

Two graphs G and H are isomorphic if there is a bijection ¢ : V(G) — V(H)

such that two vertices in G are adjacent if and only if they are also adjacent in H.

A complete graph K, is a graph on n vertices with an edge between any two
vertices in V(K,,). A k-clique in a graph G is a subgraph of G that is isomorphic
to the complete graph K. An r-reqular graph is a graph in which all vertices have
degree r, where r is a nonnegative integer. A planar graph is a graph that can be
represented in two dimensions in such a way that no edges cross. A k-partite graph
is a graph whose vertex set can be partitioned into k subsets Vi, Vs, ..., V) such that
no two vertices in any given subset are adjacent. A k-partite graph is complete if
any two vertices that are not in the same subset are adjacent, and is denoted by

Ky, ns....n,., Where n; is the cardinality of subset V;, i =1,2,... k.

A graph is connected if, for every partition of its vertex set into two nonempty
sets X and Y, there is an edge with one vertex in X and one vertex in Y. A path
is a simple graph whose vertices can be arranged in sequence in such a way that
two vertices are adjacent if they are consecutive in the sequence, and not adjacent
otherwise. We will use P, to denote a path containing n vertices. Let P = p;...p;
and () = ¢q1...q; be two paths in G. Then the concatenation of the two paths
Pi--.piqi-..¢q; is denoted by PQ. The detour order of a graph is the order of a
longest path in the graph. A cycle is a graph of order at least 3 whose vertices can
be arranged in a cyclic sequence in such a way that two vertices are adjacent if and
only if they are consecutive in the sequence. We will use (), to denote a cycle of
length n. The girth of a graph G is the length of a shortest cycle in G, and the
circumference of G is the length of a longest cycle in G. A component is a subgraph
in which any two vertices are connected by a path, and no vertex in the component
is connected to a vertex outside the component. The number of components of a
graph G will be denoted comp(G). If X is a subset of V(G), where G is a connected
graph, such that G — X is not a connected graph, then X is referred to as a vertex

cutset of G.

Two paths that have the same end vertices but have no other vertices in common

12
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are called internally disjoint. A graph G is k-connected if, for any u,v € V(G) there
are at least k£ internally disjoint paths with end vertices u and v. The connectivity

k of GG 1s the maximum value of k for which G is k-connected.

A graph is hamiltonian if the circumference of the graph is equal to the order
of the graph. A graph is traceable if the detour order of the graph is equal to the
order of the graph. A cycle C in a graph G is extendable if there exists a cycle C’
that contains all the vertices of C' as well as one additional vertex of G. A graph
G is cycle extendable if every nonhamiltonian cycle is extendable, and is fully cycle
extendable if in addition every vertex lies in a cycle of length 3. A graph G is chordal
if every cycle of length greater than three has a chord.

We say a graph G is locally P if (N(v)) has the property P for every vertex
v € V(G). In particular, a graph is locally connected (abbreviated LC'), locally
traceable (abbreviated LT'), and locally hamiltonian (abbreviated LH) if (N(v)) is
connected, traceable, and hamiltonian, respectively.

If t is a positive real number, a graph G is t-tough if comp(G — S) < |S|/t for
every vertex cutset S of V(G). The toughness of a graph G, denoted ¢(G), is defined
as t(G)) = min {%}, where the minimum is taken over all vertex cutsets S of
G.

A set U C V(G) is independent if there are no edges between vertices in U.
The independence number of G, denoted «(G), is the cardinality of the largest

independent subset of vertices in V(G).

A connected graph that contains no cycles is called a tree. A generalized version
of this concept is that of a k-tree. A k-tree is a graph that can be constructed in the
following way: start with a complete graph Kj.;. The graph can be expanded by
adding one vertex v of degree k at a time, with the requirement that the (N(v)) is a
k-clique [28]. If a k-tree G is constructed in such way that no more than one vertex

is added to any clique, then G is called a simple-clique k-tree (SC k-tree) [22].

For any graph H, a graph G is said to be H-free if G does not contain H as an
induced subgraph.

The class of problems that are solvable in polynomial time is denoted by P [10].
A related class of problems is denoted by NP, which stands for nondeterministic

polynomial time. A problem is in NP if it is possible to confirm in polynomial
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time that a proposed solution is a valid solution, implying that P C NP. A prob-
lem is NP-complete if a polynomial-time algorithm for solving it would result in
polynomial-time solutions for all problems in N'P.

The Hamilton Cycle Problem (which will be abbreviated to HCP when conve-
nient), is the problem of deciding whether a graph is hamiltonian or not. We use
the notation A% to denote the maximum value of A for which the HCP for the class

X of graphs can be calculated in polynomial time.

1.2 Background

This thesis focuses on two local properties, namely local traceability and local hamil-
tonicity, and how they relate to traceability and hamiltonicity. However, I think it
is a good idea to start with an overview of local connectedness, to give the reader an
insight into how the increasing strength of the local condition affects the properties
of the graph. The concept of local connectedness was introduced by Chartrand and

Pippert [11] in 1974, where they proved the following theorem.

Theorem 1.2.1. [I1] If G is a connected, LC graph of order at least 3 and A(G) <

4, then G 1is either hamiltonian or isomorphic to the complete 3-partite graph K ; 3.
Kikust [23] investigated the case where G is 5-regular.

Theorem 1.2.2. [23] A connected, LC graph that is 5-reqular is hamiltonian.
Hendry [20] strengthened Kikust’s theorem.

Theorem 1.2.3. [20] Let G be a connected, LC graph such that A(G) < 5 and
A(G) —6(G) < 1. Then G is fully cycle extendable.

Gordon et al. [I9] extended the range of vertex degrees of G for which G is fully

cycle extendable.

Theorem 1.2.4. [19] Let G be a connected, LC' graph with A(G) =5 and 6(G) > 3.
Then G is fully cycle extendable.

They also proved a useful theorem for when § = 2:

Theorem 1.2.5. [19] If G is a nonhamiltonian connected, locally connected graph

with §(G) = 2 and A(G) =5, then at least one of the following holds.

14
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(a) G € {Ms, My, M5} (see Figure .

(b) G contains two nonadjacent vertices x1,xo of degree 2 such that N(z,) =

N(l’g)

(¢) G contains the graph F depicted in Figure as induced subgraph.

Figure 1.1: The graph F.

On the other hand, Gordon et al. [19] also showed that the Hamilton Cycle
Problem is NP-complete for LC' graphs with maximum degree 7. They thus showed
that 4 < A} < 6, and speculated that the correct value is 6. However, at a work-
shop held at Salt Rock in January 2016 at which Susan van Aardt, Alewyn Burger,

Marietjie Frick, Carsten Thomassen and I participated, we proved the following.

Theorem 1.2.6. [I] The Hamilton Cycle Problem for LC graphs with A =5 and
0 = 2 1s NP-complete.

It follows that A}, = 4. I shall investigate the values of A}, and A}, in
Chapters [2] and [3|

A graph is considered to be claw-free if the graph contains no induced K; 3. This
can also be seen as a local condition: a graph G is claw-free if a((N(v))) < 3 for all
v € V(G). Combining this with local connectedness leads to a powerful result by

Oberly and Sumner [25].

Theorem 1.2.7. [25] Let G be a K, 3-free, connected, LC' graph of order at least 3.

Then G is hamiltonian.

Clark [I3] showed that the conditions in Oberly and Sumner’s theorem are suf-
ficient to ensure that the graph G is pancyclic, and Hendry [2I] noted that Clark
had actually proved that G is fully cycle extendable.

In [25] Oberly and Sumner also made the following conjecture:

15



Chapter 1

Conjecture 1.2.8. [25] If k > 1 and G is a Ky gio-free connected, locally k-

connected graph of order at least 3, then G is hamiltonian.

They were not entirely confident that this conjecture is true, but expressed con-

fidence that a weaker alternative conjecture is true:

Conjecture 1.2.9. [25] If k > 1 and G is a Kygi1-free connected, locally k-

connected graph of order at least 3, then G is hamiltonian.

Currently both conjectures are still open, although some progress has been made
towards settling them. At a workshop hosted by the Banff International Research
Station in August 2015, Susan van Aardt, Jean Dunbar, Marietjie Frick, Ortrud
Oellermann and I considered a weaker connectivity condition: a graph G is k-Ps-
connected if, for every pair u, v of non-adjacent vertices of G there exist k£ distinct
u — v paths of order 3 each. We proved the following result, which is somewhat

weaker than Conjecture [1.2.9

Theorem 1.2.10. [2] Ifk > 1 and G is a connected, locally k-Ps-connected, K j1o-

free graph of order at least 3, then G is fully cycle extendable.

I shall return to Oberly and Sumner’s conjectures in Chapter 4 Oberly and
Sumner [25] also speculated that connected LH graphs might be hamiltonian, but
as they explain in a note at the end of their paper, it was pointed out to them even
before their paper was published that this is not the case. The relationship between
local and global hamiltonicity will be investigated in detail in Chapter

Finally, Ryjacek [33] made a well-known conjecture relating to local connected-

ness:
Conjecture 1.2.11. [33] Fvery LC graph is weakly pancyclic.

This conjecture has been proven for several classes of LC' graphs, such as maximal
planar graphs and chordal graphs, and squares of graphs [33], but is seems difficult
to settle for LC' graphs in general [19], and even for LT and LH graphs.
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Chapter 2

Locally Traceable Graphs

2.1 Introduction

Locally traceable graphs have received relatively little attention to date. In 1983
Pareek and Skupien [27] considered the traceability of LT and LH graphs. They

posed a number of questions, one of which is related to LT graphs:
Question 1. [27] Is 9 the smallest order of a connected nontraceable LT graph?

In 1998 Asratian and Oksimets [7] considered graphs with hamiltonian balls,
where a ball of radius r centered at a vertex v is the induced graph on vertices at
a distance no greater than r from v (this includes v). A graph for which every ball
of radius one is hamiltonian is simply a locally traceable graph. They proved the
following two results (instead of using the hamiltonian ball terminology we use LT

in the statement of these theorems).
Theorem 2.1.1. [7] Let G be a connected LT graph of order n > 3. Then |E(G)| >

2n — 3.

An outerplanar graph is a graph that can be embedded in the plane in such a
way that every vertex borders the outer face. A graph is maximal outerplanar if no

edge can be added while preserving outerplanarity.

Theorem 2.1.2. [7] Let G be a connected LT graph of order n > 3. Then G is

mazximal outerplanar if and only if |E(G)| = 2n — 3.

Since all maximal outerplanar graphs are hamiltonian, the next corollary follows

readily:
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Corollary 2.1.3. Let G be a connected LT graph of order n that is not hamiltonian.
Then |E(G)| > 2n — 2.

In 2000 Alabdullatif [5] proved essentially the same results.
It is interesting to note that there is a close relationship between 2-trees and

maximal outerplanar graphs. Markenzon et al. [22] proved the following result:

Theorem 2.1.4. [22] A 2-tree G is a mazximal outerplanar graph if and only if G
is a SC 2-tree.

Corollary 2.1.5. A connected LT graph G of order n is a SC 2-tree if and only if
|E(G)| = 2n — 3.

However, not every 2-tree is LT and not every planar hamiltonian LT graph is

a 2-tree - see Figure [2.1] for examples.

(a) (b)

Figure 2.1: (a) a 2-tree that is not LT and (b) a planar LT graph that is not a

2-tree.

In Section [2.4] I show that the answer to Question [I]is “No, the smallest order
is 10” and I present the 6 connected nontraceable LT graphs of order 10 that were
found by means of a computer search. I also show that the maximum degree of non-
traceable LT graphs is at least 6. I develop a technique that I call edge identification
to construct nontraceable LT graphs, and use this technique to show that there are
planar connected nontraceable LT graphs of all orders greater than 9. I show, more-
over, that for every n > 10 there exists a connected nontraceable LT graph with
maximum degree 7 and for every n > 22 there exists a connected nontraceable LT
graph with maximum degree 6.

During a two-week workshop at Salt Rock in August 2013 Van Aardt, Frick,

Oellerman and I [3] showed that the HCP for LT graphs with maximum degree
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at most 5 is fully solved (see Theorem in Section [2.4)). In Section it will
be shown that there exist connected nonhamiltonian LT graphs of order n with
maximum degree 6 for every n > 7. It will also be shown that the HCP for LT

graphs with maximum degree 6 is NP-complete.

2.2 Constructions and Preliminaries

We begin this section by defining a construction that will be extensively used in

what follows.

Construction 2.2.1. (Edge identification) Let Gy and Gy be two LT graphs such
that E(G;) contains an edge w;v; so that there is a Hamilton path in (N(u;)) that
ends at v; and a Hamilton path in (N(v;)) that ends at u;, i = 1,2. Now create a
larger graph G by identifying the edges uivy and usvy to a single edge uv (see Figure
[2.9). We say that G is obtained from G; and G5 by identifying suitable edges.

G,

"

Figure 2.2: The edge identification procedure.

Theorem 2.2.2. Let Gy and Gy be two LT graphs that satisfy the conditions of
Construction [2.2.1. If G and Gy are combined by means of edge identification to
create a graph G, then G is LT. If G is traceable, then both Gy and G5 are traceable.

Proof. Let wv; € E(G;), i = 1,2 be the two edges used in Construction to
form the edge wv in E(G).

First suppose w € V(G) — {u,v}. Since the neighbourhood of w is restricted to
vertices that are either all in G or all in Go, (Ng(w)) is traceable.

Now suppose w is one of u and v, say u. Let QQ;v; be a Hamilton path in
(Ng,(u1)) and let 1,2 be a Hamilton path in (Ng,(us2)), where Q1 and Qo are
paths in G; and Gy, respectively. Then QivQy is a Hamilton path in (Ng(u)).
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Using a similar argument, we can also find a Hamilton path in (Ng(v)). Hence G
is LT.

Now assume P is a Hamilton path in G. If uv is an edge of P, then P is of the
form Qiuv(@y where Quv and uv(@), are Hamilton paths of G; and G5 respectively
as illustrated in Figure (a). If uv is not an edge of P, then P is of the form
Q1uQovQ3 where either QQ;u@)ov is a Hamilton path of G and wv@j3 is a Hamilton
path of G5 or Quv(@Q)3 is a Hamilton path of GG; and uQ),v is a Hamilton path of G
as illustrated by (b) and (c) respectively.

()

Figure 2.3: Edge identification preserves LT and nontraceable properties.

O

The following observation will be useful for selecting suitable edges to use in edge

identification.

Observation 2.2.3. Let v be a vertex of degree two in an LT graph. Then any edge

incident with v is suitable for use in edge identification.

This can easily be seen by noting that if N(v) = {u,w}, the edge uw is the
Hamilton path of (N(v)), and since d(n(v) = 1, any Hamilton path of (N (u))
has v as an end vertex. In particular, if an LT graph G is combined with K3 by
means of edge identification to create a graph H, then the vertex v € V(K3) that
is not incident with the edge used in the procedure, has degree two. Hence any one
of its incident edges is still suitable for use in edge identification.

The following observation is self-evident.

Observation 2.2.4. If two planar LT graphs G1 and Gy are combined using edge
identification to create graph G, then G is planar.
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The following variation on Construction will also be needed.

Construction 2.2.5. (Edge identification within a graph) Let G be an LT graph that
contains disjoint edges w;v;, i = 1,2, such that there is a Hamilton path in (N (u;))
that ends at v; and a Hamilton path in (N(v;)) that ends at u;. Furthermore, let
N({uy,v1}) N N({ug,v2}) = 0. Now create the graph G' by identifying the edges
uvy and usvs to a single edge uv. We say that G’ is obtained from G by identifying
suitable edges within G.

Theorem 2.2.6. If a graph G’ is constructed from an LT graph G by identifying
suitable edges within G, then G’ is also LT.

Proof. Since N({ui,v1}) N N({ug,v2}) = 0, the argument used in the proof of
Theorem [2.2.2) applies here as well. O

When studying the hamiltonicity of LT graphs we will also need the following

result.

Lemma 2.2.7. Let Gy and Go be two LT graphs, and let G be a graph obtained
from Gy and G2 by identifying suitable edges. Then if G is hamiltonian, so are both
G1 and GQ.

Proof. Let u;v; € E(G;), i = 1,2 be the edges that are identified to create the
edge wv in G. Since {v,u} is a cutset in G, it follows that no Hamilton cycle in G
can include the edge vu. This implies that any Hamilton cycle in G has the form
vQ1ul)ev where v1(Q)1u; is a Hamilton path in G and vo(Q)ous is a Hamilton path in
Go. Since vu; € E(G;) for i = 1,2 it follows that each of G; and G has a Hamilton

cycle. O

2.3 Hamiltonicity of Locally Traceable Graphs

We start with a theorem by Van Aardt, Frick, Oellermann and de Wet [3] which
fully solves the HCP for LT graphs with maxiumum degree at most 5. The first part
of Section (up to and including the proof of Theorem has been published
in [3].

Let C' = wyvive...v_1v9 be a t-cycle in a graph G. If ¢ # j and {i,j} C
{0,1,...,t — 1}, then ’Uigvj and vaj denote, respectively, the paths v;v;11 ... v;
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and v;v;_; ...v; (subscripts expressed modulo ¢). Let C' = vyv; ... v_1v; be a non-
extendable cycle in a graph GG. With reference to a given non-extendable cycle C', a
vertex of G will be called a cycle vertex if it is on C', and an off-cycle vertex if it is
in V(G)—V(C). A cycle vertex that is adjacent to an off-cycle vertex will be called
an attachment vertexr. The following basic results on non-extendable cycles will be

used frequently.

Lemma 2.3.1. [3] Let vgvy ... v, 109 be a non-extendable cycle C of length t in a
graph G. Suppose v; and v; are two distinct attachment vertices of C' that have a
common off-cycle neighbour x. Then the following hold. (All subscripts are expressed

modulo t.)

1. j#i+1.
2. Neither vi11vj41 nor v;_1v;_1 is in E(G).
3. If vi_yvipr € E(G), then neither v;_1v; nor vjv; is in E(G).

4. If j = i + 2 then vy, does not have two neighbours vi,vpi1 on the path

Vit+2 ... U;.

Proof. We prove each item by presenting an extension of C' that would result if the
given statement is assumed to be false. For (2) and (3) we only need to consider the

first mentioned forbidden edge, due to symmetry.
1. vixvﬂrlavi.
2. vi+1vj+18wxvj<avi+1.
3. Uj_lvixngvi_lvi+181)j_1.
4. UkUi+1Uk+18UiSCU¢+28@k~
O

It is well-known that for k& > 3 the wheel W), is obtained from a cycle C' =
wowy . .. wr_1wo by adding a new vertex w and joining it to every vertex of C. We
call C' the rim of the wheel, w its centre and edges of the type ww;, 1 < <k — 1,
the spokes of the wheel. For k > 3, the magwheel M, is the graph obtained from the
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wheel W}, by adding, for each edge e on the rim of W}, a vertex v, and joining it to
the two ends of the edge e. Magwheels are examples of connected, nonhamiltonian
LT graphs with 6 = 2. The magwheels with A <5 are depicted in Figure [2.4]
Since the graph K ;3 is not LT, it follows from Theorem that every con-
nected, LT graph of order at least 3 and A < 4 is hamiltonian. Moreover, if G is
any graph with A = 5 that satisfies conditions (b) or (c) of Theorem [1.2.5 then it
is easily seen that G is not LT. However, magwheels are LT. Thus it follows from

Theorems [1.2.1] and [1.2.5 that the magwheels M3, My, M5 are the only nonhamilto-

nian LT graphs with A < 5. We now show that every connected LT graph with
A = 5 that is not a magwheel is fully cycle extendable.

.

N\
\
\
|
[ ] }

o M,

Figure 2.4: The graphs Ms, M, and Ms.

Theorem 2.3.2. [3] Suppose G is a connected LT graph with n(G) > 3 and A(G) <
5. Then G is fully cycle extendable if and only if G ¢ {Ms, My, Ms}.

Proof. 1t is easy to see that if G € {Mj, My, M5}, then G is not hamiltonian and
hence not fully cycle extendable.

Now suppose that G is a connected locally traceable graph with n(G) > 3 and
A(G) < 5. Then 6(G) > 2 and hence every vertex of G lies on a 3-cycle. If n(G) = 3
or 4, then G is obviously cycle extendable, so we assume n(G) > 5. Now suppose G
has a non-extendable cycle vgv; ... v;_1vy for some ¢ < n(G). Call the cycle C.

We first prove the following claim.

Claim 1. If v; has an off-cycle neighbour x, then
(1) vimivin & E(G),
(2) N(vi) = {vi—g, Vi1, %, Vi1, Viya},

(3) z is adjacent to at least one of v; o, v;12.
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Proof of Claim 1.

(1) Suppose v;_1v;41 € E(G). First suppose v; has two distinct off-cycle neigh-
bours z and y in G — V(C). Then, since there are no edges from {v;_1,v;11}
to {z,y}, we may assume, without loss of generality, that there is a 5-path
yrv;v;vi—1 in (N(v;)), where v; is necessarily a cycle vertex. Then, by
Lemma [2.3.1)3), j ¢ {i — 2,4+ 2}. Hence, since A(G) < 5, N(v;) =
{z,v;,vi41,vj_1,vj41}. By parts (1), (2) and (3) of Lemma , vj41 is not
adjacent to any of the vertices x, vi11, vj—;. Also v; is not adjacent to vj;1,
since d(v;) < 5, so vj41 is an isolated vertex in (N(v;)) and hence (N(v;)) is

nontraceable, a contradiction.

Thus we may assume that v; has only one off-cycle neighbour x, and x is

adjacent to a vertex v; € N(v;). By Lemma [2.3.1](2) j # i — 2,7+ 2. Also, by
Lemma [2.3.1](1), zv;_1, zviy1 € E(G).

If d(v;) = 4, then, since (N(v;)) is traceable, we may assume, without loss
of generality, that xvjv;41v;-1 is a Hamilton path of (N(v;)). Then, since
A(G) < 5, it follows that N(v;) = {x,v;,vi11,vj-1,0j41}. Lemma [2.3.7[1)
implies that xv;_1, 2v;41 € E(G). But (N(v;)) is traceable, so v;41 is adjacent
to at least one of v;_; and v;4; and v;_1v;41 € E(G). This contradicts Lemma

2.3.1)(3). Thus d(v;) = 5.

Since v; has only one off-cycle neighbour, there is a cycle vertex v, such that
N(v;) = {vi—1,Vit1, 2, vj, v }. By symmetry we may assume that vy, lies on the
path ijBvi,Q. Moreover, by Lemma (3), k#j+1 If vy € N(vy),
then it follows from Lemma[2.3.1(3) that v;_1v;41 & E(G). Then, by Lemma
2.3.1(2), vj_1 is not adjacent to v;_; and hence not adjacent to any vertex in
N(v;). Similarly, if v;4+1 € N(v;), then v;4q is not adjacent to any vertex in
N(v;). In either case, (N(v;)) is not traceable. Hence v; is not adjacent to
either v;_; or v;1. If vy is adjacent to x, then a similar argument shows that
vy is not adjacent to either v;_; or v;1;. In this case (IV(v;)) has two distinct
components which is not possible. Since (N (v;)) is traceable it therefore follows

that vz € E(G) and that vy, is adjacent to v; and one of v;_; and v;41.
Suppose k & {j + 2,i — 2}. Then N(v;) = {z,v;, vk, vj_1,v;41} and N(v;) =
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{vi, vj, vk_1, V41,05 }, with s being either i +1 or ¢ — 1. Thus Lemma (1)
and our assumption that A(G) < 5, imply that there are no edges from the
set {v;, vk, x} to the set {v;_1,v;41}, contradicting the fact that (N(v;)) is
traceable. Hence k = ¢ — 2 or k = j + 2. In either case, since (N(v;))
is traceable, v;_1v;41 € E(G). In the first case C extends to the cycle
Uj_l'l}j_t'_lavkvjxvivi_lvi_l’_l81}‘7‘_1. In the second case C' extends to the cycle

Uj,lvjﬂvja:vivkavi,lviﬂ 81)]‘,1 .

It follows from (1) above and Lemma [2.3.1]1) that the set S = {z,v;_1,v;11}
is an independent set. Since (N(v;)) is traceable, it follows that v; has two
cycle neighbours v;, v, & S. If v; and v, are consecutive vertices on C, then
x is adjacent to only one of them and the other one is adjacent to both v; 4
and v;41. This contradicts Lemma [2.3.1(2). We may now assume that z is
adjacent to v; and that vy lies on the path vj+281)i_2. Since A(G) = 5,

N(v;) = {z,v;-1,Vi41,v5, Uk }.

Suppose j # i + 2. Since (N(v;)) is traceable, v; is adjacent to either v;_; or
Vit1-

Case 1. vjv,_; € E(G).

In this case, N(v;) = {x,v;,v;_1,vj-1,v;41}. Our assumption that j # ¢ + 2
implies that v;_; is not a neighbour of v;. Furthermore, =, v;,_1,v;41 & N(v;_1)
by parts 1, 2, and 3 of Lemma . Hence v;_; has no neighbour in N(v;),
so (N(v;)) is not traceable.

Case 2. vjuip1 € E(G).

In this case N(v;) = {z,v;,v41,vj-1,0j41}. Now v;41 & N(v;) and further-
more T, Viy1,0j—1 &€ N(vjy1) by parts 1, 2, 3 of Lemma Hence again
(N(v;)) is not traceable.

Thus we have proved that in either case, j =1 + 2.

If v, is adjacent to z, a symmetric argument proves that £k = ¢ — 2 and this

proves Claim 1(2) in this case.

Now assume that k£ # ¢ — 2 and = & N(vg). Since (N(v;)) is traceable, both

vi—1 and v;41 are in N(vg). Hence N(vg) = {vi_1,v:, Vit1, Vk—1,Vks1}. Now
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V41 is not a neighbour of v;,_1, since otherwise C' can be extended to the cycle
Uk_1Uk+18Ui_1vk?}i+1l}il'vi+28vk_1. Also, v;_1 is not a neighbour of v;_1, since
otherwise C' can be extended to the cycle vk_lvi_lEvkviJrlvixviJrzgvk_l. Also,
by Lemma M(4), Vir1Up—1 € E(G). So vg_1 has no neighbour in N(v;) and
hence (N(vg)) is not traceable. This proves that k& = ¢ — 2. Thus we have
proved (2).

(3) From the proof of (2) it follows, since (N(v;)) is traceable, that = is adjacent

with v;_s or v;42. So (3) also holds.

Now suppose z is an off-cycle vertex that has a neighbour in C' and consider the
graph G' = (V(C) U {x}).

Suppose z is adjacent to every even-indexed cycle vertex. Then it follows from
Lemma[2.3.1|(1) that ¢ is even, say ¢ = 2k and by Claim 1(1) and (2), no odd-indexed
cycle vertex has an off-cycle neighbour. Since A(G) < 5, it follows that £ < 5 and
no even-indexed cycle vertex has an off-cycle neighbour other than . Hence G = G'.
We also note that the odd-indexed cycle vertices are mutually nonadjacent, since
otherwise G would be hamiltonian and cycle extendable. So in this case G is clearly
isomorphic to a magwheel My, for some k € {3,4,5}.

Now assume that C' has an even-indexed vertex that is not adjacent to . Then,
in view of Claim 1, we may assume without loss of generality that = is adjacent to
both vy and vy but not to vy.

Let

U ={z}U{vo,...,v5}, j=1,...,t— 1L

We shall prove, by means of strong induction, that each of the following holds

fori=2,3,...,[5].
(a) vy has a neighbour b; € {vy,vs,...,v9_3}.

(b) G contains two vy — vy; paths Qo;(—b;) and Qa;(—ve;—1) with vertex sets Us; —
{b;} and Us; — {v9;_1}, respectively.

(¢) v9;—1 is not adjacent to any two consecutive vertices on the path ’Ugia’l}g

(d) N(Um) = {bi,U2¢—2,U2i—1,U2z‘+1,U2i+2}-
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Proof of the basis step (i = 2).

(a)

Claim 1(2) implies that N(vs) = {vo,v1,2,v3,v4}. By Lemma 2.3.1(1) and
Claim 1(1), I = {z,v1,v3} is an independent set in (N(vy)). Since (N(vp)) is
traceable it follows that every vertex in N(vy) — I is adjacent to two vertices
in I. But we have assumed that x is not a neighbour of vy, so it follows that

vy is a neighbour of vy. Thus we put by = v;.

The paths Q4(—by) = wvoxvovzvy and Q4(—v3) = vorvavivy4 are the desired

vy — vy4 paths.

Note that it follows from Claim 1(1) and the fact that v;v, € E(G), that
t—1 =# 4, sot > 6. Now suppose that v has two consecutive neigh-

bours v; and v;4; on the path v48v0. Then C can be extended to the cycle
ij3%_1@4(—@3)1)580]-1)3@]-“.

We note that {vy, v, v3,v5} C N(vg). By Lemma m(4), v, does not have
two consecutive neighbours on the path v481}0. By (c), the same is true for vs.
Since v, is a neighbour of both v; and wvs, it follows that vy is nonadjacent to
both v; and v3. We already know (from Claim 1(2)) that vj is also nonadjacent
to ve. Hence, since (N (vy4)) is traceable, vy has a fifth neighbour adjacent to vs
which is a cycle vertex by Claim 1(1). Thus N(vs) = {v1, ve, vs, v5,v;} where

v; is adjacent to vs and to at least one vertex in {vy, vs}.

Suppose j > 6. Then v;_; and v; are distinct vertices. But d(v;) < 5, so
in this case v; is adjacent to only one vertex in {vy,vs}. Call this vertex w.
Then N(vj) = {w,vs,v5,vj_1,vj41}. We note that v;; is not adjacent to
vy, since d(vy) < 5. Moreover, we have shown above that w does not have
two consecutive neighbours on the path '0481)0, so vj41 is also nonadjacent
to w. Furthermore, both vs and v;_; are nonadjacent to v;,;, since other-
wise C extends to the respective cycles vj+16vt_1Q4(—w)wvj<505vj+1 and
vﬁlgvt,lQ4(—w)wvjv58vj,1vj+1. Thus v;41 is not adjacent to any vertex
in N(v;), contradicting the fact that (N(v;)) is traceable. This proves that

j =6, and hence N(vy) = {v1,v9, v3,v5, U6}
Thus the basis step is proved.
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Proof of the induction step

Let r be an integer such that 4 < 2r <t — 1 and assume that (a), (b), (c¢) and

(d) hold for every i € {2,3,...,r — 1}. We now prove that they also hold for i = r.

(a)

Parts (a) and (d) of our induction hypothesis imply that there is a vertex
br—1 € {v1,vs,...,v9_5} such that N(vo,—2) = {br—1,Vor_a, Vor_3, Vop_1, Vor
and also that vy,_1,v9, & N(ve,—4). By part (a) of our induction hypothesis,
by—1 € {v1,...,v9,_5}. By part (c), neither vy, _3 nor vy, is adjacent to b,_1,
and also, ve,_1 is not adjacent to ve,_3. Hence, since (N (vq,_o)) is traceable,

v, is adjacent to a vertex b, € {va,_3,b,_1}.

Since b, is either vg._3 or b,_1, part (b) of our induction hypothesis implies
that there is a vy — vg,_o path Qao,_o(—b,) with vertex set Us._o — {b.}. Thus
the desired vy — vg, paths are Qo,.(—b,) = Qar_o(—b,) Vo109, for b, = b,_; and
er(—wr—l) = er—z(—br)brv2r for b, = vy, _3.

Suppose vy,_; has two consecutive vertices v;, v;41 on the path vwavo. Then

C can be extended to the cycle Uj+18Ut_1Q2r(—Ugr_l)U2T+16Uj’l)2r_1vj+1.

We have shown that {b,, va,_2, V2,1, vVe.41} C N(vg,). By parts (a) and (d) of
our induction hypothesis, vy, 11 is not adjacent to vs,._o. Moreover, it follows
from (c) that vg,41 is not adjacent to any neighbour of vy, in {vy,vs,...,v9.—1}.
Hence vg,11 is not adjacent to any vertex in {b,, va,_9, Vo, _1}. Since (N (vg,))
is traceable, there is a cycle vertex v; in N(vy,) that is adjacent to vo,41 and
to at least one vertex in {b,, v, }. Since v; is adjacent to the two consecutive
vertices vy, and vg,, 1, it follows from Lemma M(l) that v; is indeed a cycle
vertex. Moreover, by (c), j > 2r 4+ 2. Since A(G) <5,

N(UQr) = {br7 Vor—2, U2r—1, U2r41, Uy, }
Suppose j # 2r 4+ 2. Then N(vj) = {voy, Vor11, wj, vj_1, 041}, where w; is the
neighbour of v; in {b,, va,_1}.

It follows from (c) that wv;;; is nonadjacent to w;. Also, both v;_; and
Vgr41 are nonadjacent to v;4q; otherwise (b) would imply that C' can be ex-

tended to the respective cycles Uj+132&_1QQT(_w]‘)lUjUjU2r+18Uj_1Uj+1 and
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< . .
Uj_t'_lavt_lQQr(_w]‘)UJjUj C'v3,41vj41. Hence v;4; has no neighbours in N (v;),

contradicting the fact that (N (v;)) is traceable. Hence j = 2r + 2 and thus
N(UQr) = {bm V2r—2, V2r—1, U2r41, U2r+2}-

This concludes the induction and proves that (a), (b), (c), (d) hold for every

ie (2,3, 1(t—1)/2]).

Figure 2.5: Ms, centered at v;.

If ¢ is odd, then it follows from (d) that v;_1v; € E(G), contradicting Claim 1(1).
Hence t is even, say t = 2k. We have shown that N (vog_o) = {vor_4, Vor_3, Vor_1, Vo, bp_1}
where by_1 € {v1,v3,...,V9_5}. Since I = {by_1, Vox_3, Vor_1} is an independent set
in (N(vag—2)) and (N (vgr_2)) is traceable, vy has two neighbours in I. By Claim
1(2), vp is not adjacent to vor_3. Hence vy is adjacent to by_; and so by_; = v; by
Claim 1.

But in the proof of (a) we showed that for each i € {2,3,...,k — 1}, the vertex
b; is either b;_1 or vo;_3, so b;_; lies on the path voﬁbz-. Thus the fact that b,_; = vy
implies that b; = vy for every i € {1,2,... k —1}.

Thus we have proved that vy, is adjacent to vy for every ¢ € {0,1,...,k — 1}.
But then G is a magwheel with k& spokes, centered at vy, and k < 5 since A(G) < 5.
The case k = 5 is illustrated in Figure [2.5] O

Theorem shows that there are only three nonhamiltonian connected LT
graphs with maximum degree 5. For LT graphs with maximum degree 6 we now

prove the following.

Theorem 2.3.3. For any n > 8 there exists a nonhamiltonian planar connected LT

graph G that has order n and mazimum degree 6.
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Proof. Let G7 be the graph Mj, depicted in Figure [2.4. For each n > 8, let G,
be the graph of order n obtained by combining G,,_; with a K5 by means of edge
identification, starting with the edge v,v9, and each time using one of the last edges
added, choosing the edge such that the same vertex is never used more than twice,
and specifically v; is only used once, as shown in Figure [2.6]

It follows from repeated application of Lemma and Observation that
for n > 7, the graph G, is a connected planar nonhamiltonian LT graph of order n

and it is clear from Figure that it has maximum degree 6 if n > 8. O]

Figure 2.6: Constructing planar nonhamiltonian LT graphs with A(G) = 6.

Corollary says that if G is a nonhamiltonian connected LT graph of order
n, then G has at least 2n — 2 edges. Since the graph G,, defined in the proof of
Theorem [2.3.3|has 2n—2 edges, we now know that this bound is sharp. The following
corollary follows easily from the proof of Theorem [2.3.3|

Corollary 2.3.4. For each n > 7, there exists a nonhamiltonian connected LT

graph of order n and size 2n — 2.

By Theorem [2.3.2] the HCP for LT graphs with maximum degree 5 is fully
solved. I now show that for maximum degree 6 the problem is NP-complete. I shall

need the following result by Akiyama, Nishizeki and Saito [4].

Theorem 2.3.5. [4] The HCP is NP-complete for 2-connected cubic planar bipartite

graphs.

Theorem has been submitted for publication in [35], although the proof

presented there is somewhat more complex than the proof below.

Theorem 2.3.6. The Hamilton Cycle Problem for planar LT graphs with mazimum
degree 6 is NP-complete.
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Proof. By to Theorem the HCP for 2-connected cubic (i.e. 3-regular) planar
bipartite graphs is NP-complete. Now consider any 2-connected planar cubic bipar-
tite graph G’. We shall show that G’ can be transformed in polynomial time to a
planar LT graph G with A(G) = 6 such that G is hamiltonian if and only if G’ is
hamiltonian.

Each vertex in G’ will be represented by a triangle in GG, and will be referred to
as a node in G.

The edges in G’ will be represented by a more complicated structure in G to
ensure that G is LT and also that G is hamiltonian if and only if G’ is hamiltonian.
Consider the smallest of the magwheels, M3, and the graph S in Figure 2.7 The
graph M3 and two copies of the graph S are combined by means of edge identification
to create the graph B in Figure 2.8 This graph will be used in G to represent the

edges in ', and will be referred to as a “border”.

Figure 2.7: (a) The magwheel M3 and (b) the graph S used in the proof of Theorem
2.3.6

Figure 2.8: The border B used in the proof of Theorem [2.3.6]

Figure [2.9| shows how the graph G’ is translated into graph G. In the figure, a
vertex z; in G’ becomes a triangle Z; in G’ and an edge e; in G’ becomes a border
B; in G. All the combinations of different components are done by means of edge

identification, and it follows from Theorems [2.2.2/ and [2.2.6| that the resulting graph

is LT, and since G’ is planar, so is G.
It remains to show that G is hamiltonian if and only if G’ is hamiltonian. Figure

shows how a Hamilton cycle in G’ translates to a Hamilton cycle in G. The
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Vertices and Nodes and
edges in G borders in G

Figure 2.9: Translating graph G’ into graph G in the proof of Theorem [2.3.6]

Z1 Z, e V(G)
ZZ
Graph G’ (2 Z; is the corresponding
Z Z6 node in G

Figure 2.10: Translating a Hamilton cycle in G’ into a Hamilton cycle in G in the

proof of Theorem [2.3.6]

heavy lines in the figure represent edges that are part of the Hamilton cycles. Since
each node has exactly three borders incident to it, all that is needed to show that

G is not hamiltonian if G’ is not hamiltonian is to show that a Hamilton cycle in
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GG can pass at most once through any given border between two nodes. Since the
magwheel Mj is nonhamiltonian, it follows that there does not exist a 2-path cover
for M3 for which the two pairs of end vertices are adjacent. Therefore there can be
at most one path passing through a border from one node to another that includes
all the vertices in the border.

]

Finally, I investigate the toughness of connected nonhamiltonian LT graphs.
None of the small connected nonhamiltonian LT graphs depicted in this chapter is
1-tough, but it is possible to construct such graphs. I will make use of the fact that

3-connected cubic graphs are 1-tough, and that not all such graphs are hamiltonian

).

Theorem 2.3.7. For any k > 6 there exists a connected nonhamiltonian LT graph

Hy with A(Hy) = k that is 1-tough.

Proof. We use the same construction as in the proof of Theorem [2.3.6] but this
time the graph G’ is a nonhamiltonian 3-connected cubic graph. To see that the
resulting graph G is 1-tough, we note that since G’ is 1-tough, removing vertices
only from the nodes of G does not result in more components than vertices removed
(the nodes are cliques). The magwheel M3 used to construct the borders in G is
not 1-tough: if the three vertices of degree 5 (labeled say vy, v9, v3) are removed, the
result is a graph consisting of four isolated vertices. If vy, v, v3 are removed from a
border in G, the resulting graph contains two isolated vertices, and the border no
longer connects the two nodes incident to it in G. We will now proceed to remove
the vertices in the position of vy, vs,v3 from borders in G. Let G,, be the graph
Gm-1 — {m1,Vm2, Vms}t — {Uma, uma}, m > 1, where m is the number of borders
that have been broken in this way, vy, 1, U, 2, Um 3 are the vertices in border m in the
same relative position as vy, vy, v3 that have been removed and w,,; and u,,, are
the two vertices that have been isolated by the removal of vy, 1, Uy, 2, U3 (note that
Gy = (). Removing an edge in any graph increases the number of components by at
most one, so removing the vertices v, 1, U 2, U g from a border in G,,_; increases
the number of components by at most 3 (w1, um2 and possibly the number of

components of G, increases by one). Since G’ is 3-connected, at least 3 borders in
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G have to be broken before G,, is disconnected. It follows that after two borders
have been broken there are 4 isolated vertices and G5 is still connected, and after m
borders have been broken (by removing 3m vertices), the number of components in
the resulting graph is at most 3+2+3+3+---=2+3(m—1) =3m—1 < 3m and
therefore GG is 1-tough. To construct the graph Hy, where k > 7, simply connect G
to a copy of K} _4 using edge identification on one of the edges that is incident to a

vertex of degree 2 in a border in G. n

2.4 Traceability of Locally Traceable Graphs

The results in this section have been published in [34].

The first property of a connected nontraceable LT graph G I will investigate, is
a lower bound for A(G).

Theorem 2.4.1. If G is a connected nontraceable LT graph, then A(G) > 6, and

this bound s sharp.

Proof. Since the graphs M3, My and Mjs in Figure [2.4] are traceable, it follows from
Theorem that A(G) > 6 (a fully cycle extendable graph is hamiltonian, and
therefore traceable). Four copies of the graph Mj; can be combined using edge
identification to create the graph in Figure [2.11| with maximum degree 6. It is easy

to see that this graph is nontraceable. Hence the bound is sharp. O

Figure 2.11: A connected nontraceable LT graph with maximum degree 6.

Next I answer Question || posed by Pareek and Skupien [27].
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Theorem 2.4.2. If G is a connected nontraceable LT graph, then n(G) > 10.

Proof. By Theorem G has a vertex w of degree k at least 6. Let vivy ... v be
a Hamilton path of (N(w)), and let X = (V(G) — N[w]).

We make the following observations:

(i) (N]w]) is traceable from v; to v;4+1 (indices taken modulo k).

(ii) (N[w]) is traceable from v; and vy to any vertex in N [w].

(iii) Since (N|[w]) is hamiltonian and G is nontraceable and LT, n(X) > 2.

(iv) Each component of X has at least two neighbours in N (w).

(v) If comp(X) > 2, then X has at least three neighbours in N(w).

Suppose n(G) < 10. Then it follows from Theorem and (iii) above that
A(G) =6, n(X) =2 and n(G) =9. Let V(X) = {z1,22}. Since G is nontraceable,
x1 and xo are nonadjacent. Then by (ii) and (iv), no vertex in X can be adjacent to
either vy or vg. If 1, say, is adjacent to both v; and v;;; (indices modulo 6), then
G — x5 is hamiltonian, and therefore G is traceable. If x; is adjacent to v; and x5 is
adjacent to v;41 (indices modulo 6), then by (i) G is traceable. Hence by (iv) and

(v) we have a contradiction. O

A computer search of graphs of order 10 resulted in the 6 nontraceable LT
graphs shown in Figure 2.12] The search was done by constructing all possible
graphs of order 10 with maximum degree of either 6 or 7. The graphs were then
tested for local traceability and traceability. Finally, graphs that were isomorphic
to each other were eliminated from the list of graphs that were found. Since the
search space is relatively small, it was feasible to do the search in Visual Basic in
MicroSoft Excel. Note that all the graphs in Figure have maximum degree 7.
It is reasonably straightforward, although tedious, to prove analytically that every

connected nontraceable LT graph of order 10 has maximum degree 7.

Theorem 2.4.3. For any k > 10 there exists a connected planar nontraceable LT

graph G that has order k and A(G) = 7.

Proof. Let G be the graph LT10A, depicted in Figure and redrawn as the first
graph in Figure 2.13] For each ¢ > 1, let GG; be the graph obtained by combining
G,_1 with a K3 by means of edge identification, starting with the edge vyv9, and

after that each time using the edge between the vertices of degree two and three of
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LTI10A LTi0B LTI10C
LT10D LTIOE LTIOF

Figure 2.12: The nontraceable LT graphs of order 10.
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v, v,

Us Vs 6 v 6

Figure 2.13: Constructing nontraceable LT graphs with A(G) = 7.

the last added triangle, as shown in Figure It follows from repeated application
of Observation [2.2.4] that for £ > 10, the graph Gj_19 is a connected planar non-
traceable LT graph of order k and it is clear from Figure that it has maximum

degree 7.
[

Note that the same procedure can be implemented using the graph in Figure
to create planar nontraceable LT graphs of any order greater than or equal to

22 with maximum degree 6.
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Locally Hamiltonian Graphs

3.1 Introduction

The notion of local hamiltonicity was introduced by Skupien [30] in 1965. He ob-
served that any triangulation of a closed surface is LH. In particular, triangulations
of the plane (maximal planar graphs) are LH. He also proved the following useful

result.
Theorem 3.1.1. [29] Suppose G is a connected LH graph of order n > 3. Then

|E(G)| > 3n — 6. Moreover, |E(G)| = 3n — 6 if and only if G is a mazimal planar

graph.
The following easy lemma was pointed out by Pareek and Skupien [27]:

Lemma 3.1.2. If G is a connected LH graph of order n that is nonhamiltonian,

then A(G) <n —3.

In 1975 Goldner and Harary showed that the Goldner-Harary graph is the small-
est maximal planar graph (and therefore the smallest connected planar LH graph)
that is nonhamiltonian [I8]. The Goldner-Harary graph has order 11 and size 27,
and is shown in Figure 3.5 In 1983 Pareek and Skupieri [27] extended this result to
LH graphs:

Theorem 3.1.3. [27] The smallest connected, nonhamiltonian LH graph has order
11.

It follows from the next result by Chartrand and Pippert [11I] that connected
LH graphs are 3-connected.
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Theorem 3.1.4. [I1] If a graph G is locally n-connected, n > 1, then every compo-
nent of G is (n + 1)-connected.

The next result is fairly obvious.
Lemma 3.1.5. Let G be an LH graph and letv € V(G). Then a({N(v))) < d(v)/2.

There is a relationship between 3-trees and L H graphs similar to the one between

2-trees and LT graphs. Again, Markenzon et al. proved the relevant result:

Theorem 3.1.6. [22] A graph G of order n > 3 is a SC-3-tree if and only if it is a

chordal mazimal planar graph.

Corollary 3.1.7. A connected LH graph G of order n is a SC' 3-tree if and only if
G is a chordal LH graph with |E(G)| = 3n — 6.

In Section [3.2]I develop a technique called triangle identification that will be used
extensively to manipulate and construct LH graphs with certain desired properties.

In Section [3.3|T investigate the global cycle properties of LH graphs with bounded
maximum degree. The Goldner-Harary graph has maximum degree 8, and this
led Pareek to speculate that every connected LH graph with maximum degree at
most 7 is hamiltonian, and he published a proof for this [26]. However, I claim
that his proof is not valid, and I explain the reasons for my claim. Nevertheless,
it follows from Pareek’s work and Theorem that every connected LH graph
with maximum degree 6 is hamiltonian. I show that for every n > 11 there exist
connected nonhamiltonian LH graphs with maximum degree at most 9, but to date
I have found only finitely many with maximum degree 8. I prove that the HCP for
LH graphs with maximum degree 9 is NP-complete.

Pareeck and Skupien [27] asked four questions regarding LT and LH graphs. The
first question was addressed in Chapter 2] as Question [1 The other three questions

will be addressed here:
Question 2. [27] Is 14 the smallest order of a connected nontraceable LH graph?

Question 3. [27] Does there exist a nonhamiltonian connected LH graph that is

reqular?
Question 4. [27] Is K4 the only reqular LH graph that is not 4-connected?
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Figure 3.1: The Goodey graph (a connected nontraceable LH graph of order 14).

Figure depicts a connected nontraceable LH graph of order 14. It was pre-
sented in 1972 as an example of a maximal planar nontraceable graph of smallest
order by Goodey [17], who also proved that every maximal planar graph of order

less than 14 is traceable.

In Section [3.4] T answer Question [2]in the affirmative by proving that there is no
connected nontraceable LH graph of order less than 14. Using the triangle identi-
fication technique, I show that there are planar connected nontraceable LH graphs
of every order greater than 13. I also show that there exist connected nontraceable

LH graphs with minimum degree £ for all £ > 3.

In Section I show by construction that the answer to Question [3] is posi-
tive. The constructed graphs have connectivity 3, so this answers Question [4] in the

negative.

Entringer and MacKendrick [16] established an upper bound for f(n), the largest
integer such that every connected LH graph of order n contains a path of length
f(n). Their results imply that lim,,_,~ f(n)/n = 0. In Section I show that if
p(n, A) is the largest integer such that every connected planar LH graph of order n
with maximum degree A contains a path of length p(n, A), then lim,, ., p(n, A)/n =
0 for A > 11.
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3.2 Construction techniques for LH graphs

The following procedure will be used often to construct LH graphs with certain

properties.

Construction 3.2.1. Fori = 1,2, let G; be an LH graph that contains a triangle
X; such that for each vertex x € V(X;), there is a Hamilton cycle of (N(x)) that
contains the edge X; —x. Suppose V(X;) = {u;, v, w; }, i = 1,2. Now create a graph
G of order n(G1) +n(Gy) — 3 by identifying the vertices u;, i = 1,2 to a single vertex
u, and similarly the vertices v;, i = 1,2 to v and w;, i = 1,2 to w, while retaining
all the edges present in the original two graphs (see Figure . We say that G is
obtained from G, and G, by identifying suitable triangles.

G
1 ) . C}2
S N p e
/ Uy , N\ / v P
/ \ /
{ \ { \
{ : u | — { : -
;U 2 / fu <
\\ S w; W, \\ y / w
_ N y .

Figure 3.2: The triangle identification procedure.

Our next result shows that certain properties are retained when two graphs are

combined by means of triangle identification.

Lemma 3.2.2. Let G| and Gy be two LH graphs, and let G be a graph obtained

from G and G5 by identifying suitable triangles. Then
(a) G is LH.

(b) If Gy and Gy are planar, then so is G.

(¢) If G is hamiltonian, so are both G1 and Gs.

(d) If G is traceable, so are both G1 and Gs.

Proof. We use the notation defined in Construction |3.2.1}

(a) Let X be the triangle of G formed by identifying the vertices of X; and
X, in Construction [3.2.1] Observe that if y € V(G; — X1), then Ng(y) = Ng, (v),
except for a possible label change of vertices in Ng, (y) NV (X7) to the corresponding
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vertices in V(X). Hence if y € V(G — X1), then (Ng(y)) is hamiltonian. The same
is true for y € V(G2 — X3). Now suppose y € V(X), say y = u. Let v;Qiwiv;
and wy@Qauaws be Hamilton cycles of (Ng, (u1)) and (Ng,(ug)) respectively. Then
vQ1wQ9v is a Hamilton cycle of (Ng(u)). Using a similar argument, we can also

find Hamilton cycles for (Ng(v)) and (Ng(w)).

(b) First we show that a separating triangle (a separating triangle is a triangle
that does not border a face in a plane representation of the graph) is not suitable
for use in triangle identification. Let vy, v, and v3 be the vertices of a separating
triangle in G;. Since LH graphs are 3-connected, each vertex in the separating
triangle has neighbours both inside the triangle and outside the triangle. It follows
that in (N(vy)) the edge vovs is a cut edge and is therefore not part of a Hamilton

cycle in (N(v1)). Therefore the triangle is not suitable for triangle identification.

Let X; and X5 be the respective triangles of G; and G4 that were used in the
triangle identification procedure of Construction to form the triangle X of G.
Since G; and Gy are planar, G; can be drawn such that the edges of X; border the
outer face of GGy, and G5 can be drawn such that the edges of X5 border an inner
face of G5 in a plane representation. The triangle identification procedure then
essentially draws G'; — X inside X and G5 — X5 outside X. Hence the resulting
graph G is planar.

(c) First note that since {u,v,w} is a cutset, it follows that no Hamilton cycle
in G includes more than one edge between vertices in {u, v, w}. Figure shows
the only possible patterns that a Hamilton cycle in G can follow (the Hamilton
cycle can include either one edge or no edges in ({u,v,w})). It follows that if G is

hamiltonian, then so are both G; and Gs.

(d) Now suppose G is traceable. Since only vertices in V(X)) have neighbours
in both GG; and G, Figure shows the possible patterns that a Hamilton path in
G can follow. The Hamilton path in Figure [.4|(a) uses two edges of X, the ones in
Figure [3.4(b)-(d) use only one edge of X and the ones in Figure [3.4(e)-(i) do not use
any edge of X. In each case it is easily seen that each of G; and G5 has a Hamilton

path.
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@ S ®
Figure 3.3: The possible Hamilton cycles through G.
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Figure 3.4: The possible Hamilton paths through G.

]

Note that it is possible to create a nonhamiltonian LH graph by using triangle
identification to combine two hamiltonian LH graphs. In fact, it is possible to
construct the Goldner-Harary graph using triangle identification and multiple copies
of the graph Kj.

We will also need the following procedure, called triangle identification within

an LH graph.

Construction 3.2.3. Let G be an LH graph that contains disjoint triangles X, and
Xy such that N(X1) NN (Xs) =0 and for each x € N(X;) there is a Hamilton cycle
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of (N(x)) that contains the edge X; —x, i = 1,2. Let V(X;) = {u;, v;, w;},i = 1,2.
Now create a graph G' of order n(G) — 3 from G by identifying u;, i = 1,2 to a
single vertex w, and similarly the vertices v;, i = 1,2 to v and w;, 1 = 1,2 to w,
while retaining all the edges present in the original graph. We say that G’ is obtained
from G by identifying suitable triangles within G.

Lemma 3.2.4. If G’ is a graph obtained from an LH graph G by identifying two
suitable triangles within G, then G' is LH.

Proof. Let X; and X5 be two suitable triangles in G. We use the same notation as
in Construction [3.2.3] Note that the neighbourhood of a vertex z € V(G) =V (X;) —
V(X3) is not changed by the construction (except for possible label changes, e.g.,
from u;, i = 1,2 to u), because N(X;) N N(Xz) = (. Therefore, in G’ only the
neighbourhoods of u, v, w need to be considered. Let C; be a Hamilton cycle of
(Ng(u;)) containing the edge v;w;, ¢ = 1,2. Then in G’, the cycles C; and Cy have
only the edge vw in common, since Ng(ui) N Ng(uz) = (. Hence Cy — vw and
Cy — vw can be combined to form a Hamilton cycle of (Ng/(u)). Similarly, we can

prove that (Ng/(v)) and (Ng/(w)) are hamiltonian. Hence G’ is LH. O
The final result in this section will be used in Section 3.6l

Lemma 3.2.5. In an LH graph G, any vertex of degree 3 can be used three times
in triangle identification, once in combination with each distinct subset of two of its

three neighbours.

Proof. Let vy € V(G) such that N(vy) = {vg,vs,v4} and note that (N[v,]) = Kj.
Since d(vy) = 3, each triangle (N|vi| — v;), i = 2,3, 4, is suitable for triangle identi-
fication. There are paths P, P3 and P, in GG such that the following are Hamilton
cycles of (Ng(v;)), 1 =1,2,3,4:

In (Ng(v1)): v9v30409

In (Ng(v2)): vsv1v4Pyvs
In (Ng(v3)): voviv4 Py
In <Ng(2)4)>: ’021)1’03P4112.

Let Gy be an LH graph with a suitable triangle X = ({z1,x9,x3}). For each
i =1,2,3, let Q; be the path in the Hamilton cycle of (Ng, (x;)) between the end
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vertices of the edge X — x;. Now use triangle identification to combine G with G
to form the graph H; by identifying the triangle ({vq,v9,v3})) with the triangle
({x1,z2,23}). Let the identified vertices retain the labels vy, vo, v3. By Lemmam
(a), Hy is LH and the following are Hamilton cycles of (N, (v;)), 1 =1,2,3,4:
In (N, (v1)): Chy o = 02Q1030409
In (Ng, (v2)): Chy oy = v3Q20104 Povsg
In (Ng, (v3)): Cy vy = v2Q30104 P30y
In (N, (v4)): CHy vy = V20103 Py0s.

The triangle ({v1,v9,v4}) in H; is now suitable for triangle identification, since
VgUy, V104, V102 are edges in Cu, 4., CH, vy, CH,y v, TeSpPectively.

Next, let G5 be an LH graph with a suitable triangle Y = ({y1,v2,94}). For
i =1,2,4, let R; be the path on the Hamilton cycle of (Ng,(y;)) between the end
vertices of the edge Y —y;. Now use triangle identification to combine H; with G, to
form the graph Hj by identifying the triangles ({vy, v, v4}) and ({y1, o, ya}). Let
the identified vertices retain the lables vy, v, v4. By Lemmam (a), Hy is LH and
the following are Hamilton cycles of (Ng, (v;)), i = 1,2, 3, 4:

In (Np,(v1)): CHy v, = V2010304 R 9

(
In (N, (v2)): CHyvo = V3Q201 Rova Pyvs
In (Np,(v3)): CHy s = V2030104 P30y
IIl <NH2 <U4)>2 CHg,m = UQR4U1U3P4U2.

Since vzvy, v1v4 and vivg are edges in Cp, .y, CHyvg, CHyo,, Tespectively, the
triangle ({v1,vs3,v4, }) in Hy is now suitable for triangle identification, so a third

triangle identification, using this triangle, may be performed. O

Remark 3.2.6. A given triangle may not be used more than once in triangle iden-

tification.

To see that a triangle with vertices x1, 9 and x3 in an LH graph GGy can only be
used once in triangle identification to combine ; with an LH graph G2, note that
before triangle identification the edge zax3 is part of a Hamilton cycle in (Ng, (21)).
After triangle identification, the edge wsx3 is replaced in the Hamilton cycle in
(Ng(z1)) by a path with vertices that originated from G5. The same constraint

does not apply to vertices.
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3.3 Global Cycle Properties of Locally Hamilto-
nian Graphs with Bounded Maximum Degree

A computer search for order 11 LH graphs found the four graphs in Figure [3.5]
Graph G11A is the Goldner-Harary graph and graph G11B was first found by one
of my supervisors (Frick). Note that G114 is a maximal planar graph and has size
27, while the other three graphs have size 30 and are therefore not planar. Also note

that all four graphs have maximum degree 8.

Figure 3.5: Nonhamiltonian LH graphs of order 11.

In 1983 Pareek [26] published a paper claiming that every connected LH graph
with maximum degree less than 8 is hamiltonian. However, the proof in his paper
omits several special cases, and some of the claims that he makes on which he bases
further results are false.

Pareek’s proof will not be set out in detail. Rather, I will focus on the main
reasons why I believe it is not valid (this discussion has also been submitted for
publication in [35]). Pareek considers a longest cycle C' = vyvy... 001 in an LH
graph G with A(G) < 7. He shows that if G is not hamiltonian, then C' contains
a vertex vy of degree at least 7 that has 6 neighbours on C' and one neighbour x in

G —V(C). Let N(vy) = {x, va,v;,v;, vk, v, v }. Since (N (vq)) is hamiltonian, = has
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two neighbours in N(v), say v; and vg. It suffices to consider the following three
cases (Figure . The possibility that a graph may belong to both Case 1 and
Case 2 is not explicitly considered, but does not affect the logic of the argument.
Case 1. vg11 € N(vy).
Case 2. vp_1 € N(vy).
Case 3. N(v1) N{vi_1, Vi1, Vp_1, 031} = 0.
Since (N (vg)) is hamiltonian, v, and = have a common neighbour v, # vy on C.
I agree up to this point. But then Pareek claims that Case 3 converts to either

Case 1 or Case 2 and I do not agree with that. Pareek argues that in Case 3, the

Vt Vl V2 Vt V]. V2

Vi .

Vi1 Vi Vice

(Case 1) (Case 2) (Case 3)

Figure 3.6: The three cases used in Pareek’s proof.

fact that the neighbourhoods of vy, v;, vi, vj, v; and v, induce hamiltonian graphs
implies that d¢(v,) = 6 and that v, has a neighbour in {vg_1, vg41}. By relabelling
the vertices so that v, becomes vy, it would then follow that this case converts to
either Case 1 or Case 2. However, F igure (a) shows an example of such a situation
where the neighbourhoods of vy, v;, vy, vj, v; and v, induce hamiltonian graphs, but
neither vy nor v; has consecutive neighbours on C'. This case does therefore not
convert to Case 1 or Case 2. (I have illustrated the case where v, = v;, as this
leads to the simplest example, but even if v, and v; are distinct, the same kind of
counterexample is possible.)

The next step in Pareek’s proof is to show that if Case 1 occurs, then so does Case
2. I do not agree with this either. The graph in Figure (b) is a counterexample:
the neighbourhoods of v, v; and vy induce hamiltonian graphs, but Case 2 does
not occur (it is also possible to find Hamilton cycles in the graphs induced by the

neighbourhoods of the unlabeled vertices in the figure, but for the sake of clarity
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Figure 3.7: Counterexamples to Pareek’s Claims.

these are not shown).

Pareek’s final step is to show that Case 2 is not possible. However, he omits some
of the possible subcases of Case 2, but more seriously, the proof fails if £k < p < t.

I therefore regard the problem as to whether there exists a nonhamiltonian con-
nected LH graph with maximum degree 7 as unsolved. Nevertheless, it follows from
the correct part of Pareek’s proof that every connected LH graph with maximum
degree at least 6 is hamiltonian. Moreover, at the mentioned Salt Rock workshop,
we adapted the technique that Pareek had used to prove the following (this was
published as [3]).

Theorem 3.3.1. [3] Let G be a connected LH graph with n(G) > 3 and A(G) < 6.
Then G is fully cycle extendable.

Proof. Since G is locally hamiltonian, every vertex lies on a 3-cycle. It suffices thus
to show that every cycle is extendable. Assume, to the contrary, that there is a
cycle C' = vovy ... v_1vy of length ¢ < n(G) that is not extendable. Since G is
connected, some vertex of C', say vg, has an off-cycle neighbour x. Since (N(vp))
contains a Hamilton cycle H,,, it contains two = — C' paths that are disjoint except
for . Let v; and vy, be the first cycle vertices on the respective paths where j < k.
Then there are off-cycle vertices z;,x, € N(vg) (at least one of which is x, since

deg vo < 6.) such that z; is adjacent to v; and xy is adjacent to v;. By Lemma
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First, suppose vy, v;_1, v;, vy are the only neighbours of vy on C. Then vivi_1v1v;
or vpv1v_1v; is a subpath of H,,. Assume the former. (The latter case can be
handled similary.) By Lemma [2.3.1)3), j # 2 and k # t — 2.

It follows from Lemma[2.3.1[1) and (3) that I = {xk, vk_1,vs11} is an indepen-
dent set in (N(vg)). Hence, since (N(vg)) has a Hamilton cycle, |N(vg)| = 6 and
every vertex in N (vy) — I, is adjacent to two vertices in [. But then vy is adjacent
to at least one of v,_; and vg.1, contradicting Lemma (3) Hence vy has exactly
five neighbours on C'. In fact, this proves that every attachment vertex of C' has
exactly 5 cycle neighbours and one off-cycle neighbour.

Thus we may assume that N(vg) = {z, v1, vi_1, v;, Ug, v, }, where j < k and v,zvy
is a path on a Hamilton cycle H,, of (N(v)) and v, is another cycle neighbour
of v9. Thus we may assume without loss of generality that H,, contains the edge
vjv1 or vjvi_1. Then it follows from Lemma [2.3.1|(3) that v;_yv;11 & E(G). Hence
I; = {x,v;_1,v;41} is an independent set in (/N (v;)). Hence every vertex in N (v;)—1;
is adjacent to at least two vertices in J;. But by Lemma[2.3.1[2), vi_1v;-1 ¢ E(G) so
vi—1 ¢ N(v;). Hence v; € N(v;). But since vjv,41 ¢ E(G) it follows that v; = v;_,
ie j=2.

By Lemma (3), vqv; ¢ E(G), so vy is adjacent to vy or v;_;. Thus a
similar argument as above shows that £k = ¢ — 2. Since the path v;_sxvs lies on
H,,, the fact that v,_jv; ¢ E(G) implies that vyv,v,_; also lies on H,,. Hence
3 < ¢ < t—3by Lemmal[2.3.1[2). We observe that v,_1v441 & E(G), since otherwise,
vq_lvq+1avt_lqulvoxvgavq_l is a (t + 1)-cycle that contains the vertices of C, a
contradiction. But by Lemma (4), neither v,_; nor vy, is adjacent to either
vy or vy. Hence {vy,vs_1,04-1,v,41} is an independent set in (N (v,)). But, since
|N(v,)| < 6 it follows that (N (v,)) is nonhamiltonian. This contradiction produces
the desired result. O

Theorem extends the result of Altshuler [6] that any 6-regular triangulation
of the torus is hamiltonian.

In order to prove the next theorem we will need a planar LH graph of any order
n > 4 with maximum degree at most 6 that contains a triangle with vertices uy, us
and ug of degrees 3, 4 and 5 respectively. Observation shows how to construct

such a graph.
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Observation 3.3.2. There exists a planar LH graph G of order n for everyn > 4
such that A(G) < 6 and G contains a triangle whose vertices have degrees 3, 4 and
5.

Proof. Such a graph can be constructed in the following manner: start with Ky
drawn in a plane representation. Attach an additional vertex to the three outer
vertices in K to create graph G5. Keep repeating this procedure (add an additional
vertex by connecting it to the three outer vertices in G;). The procedure essentially
starts off with K, which is LH, and in each step uses triangle identification to
combine G; with Ky, so it is clear that the new graph G, is also LH. Moreover,
by drawing the graph in each step so that edges between the last three vertices
added border the outer plane, the maximum degree can be limited to six, and the

last three vertices added have degrees 5, 4 and 3, respectively. See Figure O

Figure 3.8: Constructing a planar LH graph with maximum degree 6.

Theorem 3.3.3. For every n > 11 there exists a connected planar nonhamiltonian

LH graph G with A(G) <9.

Proof. For any k > 4, Let Hy be a planar LH graph of order k& with A(Hy) < 6
such that Hjp contains a triangle with vertices uy, us and wuz of degrees 3, 4 and
5 respectively. Using vertices with low degrees in triangle identification limits the
degrees of the resulting identified vertices. Now combine combine Hy with the graph
G11A in Figure 3.5 using triangle identification by identifying w; with vy, us with
ve and uz with v3. Then the resulting graph G is a connected graph with A(G) =9
and n(G) = 11 + k — 3 and, by Lemma [3.2.2] (b) and (c), G is both planar and

nonhamiltonian. ]

49



Chapter 3

I have found nonhamiltonian connected LH graphs with maximum degree 8 and
order 11, 13, 14, 15, and as large as 34, but I do not know whether there are infinitely
many. The following theorem shows that there are none of order 12. The proof is
long and uninteresting, and can be found in Appendix 1. The result will be needed

to prove Theorem [4.2.7]

Theorem 3.3.4. Let G be a connected nonhamiltonian LH graph of order n = 12.
Then A(G) =9.

Chvatal [12] and Wigderson [36] independently proved that the Hamilton Cycle
Problem for maximal planar graphs is NP-complete. Although neither author was
interested in the minimum value of the maximum degree for which this is true, it
is straightforward to manipulate the construction Chvatal used to show that the
theorem holds for a maximum degree as low as 12. However, I shall make a further
improvement for LH graphs (that is, if we drop the requirement that the graph
be planar). A weaker version of Theorem has been submitted for publication
in [35] (The Hamilton Cycle Problem for LH graphs with maximum degree 10 is
NP-complete).

Theorem 3.3.5. The Hamilton Cycle Problem for LH graphs with maximum degree
9 is NP-complete.

Proof. Starting with a cubic graph G’, we will construct a connected LH graph G
with A(G) = 9 such that G is hamiltonian if and only if G’ is hamiltonian.

Each vertex in G’ is replaced by a copy of a K4 graph in GG, and will be referred
to as a node in G.

The edges will be replaced by a more complex structure, both to ensure local
hamiltonicity and to ensure that G is hamiltonian if and only if G’ is hamiltonian.
Consider the nonhamiltonian LH Goldner-Harary graph H in Figure (a) and
the LH graph D in Figure (b). We use triangle identification to combine H with
two copies of D in the following way: using the first copy of D, identify v; and x1,
vy and w9, and vy and z3, and using the second copy of D, identify u; and zq, us
and x5, and uz and x3. This yields the graph F; in Figure which is LH and

nonhamiltonian.
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(2

X1

(a) (b)

Figure 3.9: (a) The Goldner-Harary graph H and (b) the graph D used in the proof
of Theorem [3.3.5

Figure 3.10: The graph F; used in the proof of Theorem [3.3.5

The graphs F; will be used to connect the nodes in G and will be referred to
as “borders”. Thus each edge in G’ will be replaced by one border. The borders
are connected to the nodes by means of triangle identification. Let the vertices in
a node in G be y1,y92,ys3,y4 and let the vertices in F; be as shown in Figure [3.10}
Since each vertex in G’ has degree three, each node in G is attached to three copies
of F;. We identify the vertices as shown in Table [3.1] We use the graphs F, Fy and
F3 for illustrative purposes. See Figure (the heavy lines in G represent edges
belonging to the nodes).
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Vertex in node | Vertex in F;
n w11
Y2 W12
Ys w1,3
Y2 W22
Ys W21
Ya W23
n w3,3
Y2 W32
Ya w31

Table 3.1: Vertices identified in the proof of Theorem [3.3.5

Vertices and Nodes and
borders in G

edges in G’

Figure 3.11: Converting the graph G’ to G.

Checking the degrees of the vertices that have been identified shows that A(G) =
9 and by Lemmas 3.2.2| (a), |3.2.4] and [3.2.5, G is LH.

We still have to show that G is hamiltonian if and only if G’ is. Figure [3.12
shows how a Hamilton cycle in G’ translates to a Hamilton cycle in G (the heavy

lines represent paths in the Hamilton cycle).
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Graph G’

Z; Z4

z;€ V(G)
>z2 < Z; is the corresponding

Z3 Z6 node in G

Consider a copy of H in a border of GG that connects two nodes, say Z; and Zs.

Suppose C' is a Hamilton cycle in G. Then S = N(s) — {ve, vs, us, us} (i.e. the

Figure 3.12: Translating a Hamilton cycle from G’ to G.

Assume that the edges between H and Z; are incident with vertices in {uq, us, us},
and the edges between H and Z, are incident with vertices in {vy, vo, v3} (as labelled

in Figure 1(a)).

set of unlabelled neighbours of s in H in Figure 1 (a)) is an independent set of
cardinality four and N(S) = {va, vs, ug, ug, s}. The intersection of C' with (N|s])
is therefore a path with end vertices in {vy, v3, us, uz}. Hence any path cover of H
contains at most one path that has one end vertex in {uy, us, u3} and the other in
{v1,v9,v3}. Thus every Hamilton cycle in G has at most one path from Z; to Z;

that passes through the border between them. Therefore, since each node has three
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borders incident to it, if G’ is not hamiltonian, then G is not hamiltonian. n

It follows from Theorems |3.3.1] and [3.3.5 that A}, € {7,8}. I think it very un-

likely that connected nonhamiltonian LH graphs with maximum degree 7 exist, and
speculate that there are only finitely many connected nonhamiltonian LH graphs
with maximum degree 8, which would imply that A}, = 8.

Finally, a note on toughness. Chvatal raised the question of whether maximal
planar nonhamiltonian graphs can be 1-tough [24]. This was answered by Nishizeki
[24] by exhibiting such a graph of order 19 and maximum degree 15. Soon afterwards,
Dillencourt [14] and Tka¢ [32] found smaller examples of such graphs (orders 15
and 13 respectively, with maximum degree 9). Tk&c¢ also showed that 13 is the
smallest possible order for such graphs. Tkéa¢’s graph can be found in Figure [3.13]
It is still unknown whether a connected LH graph with maximum degree 8 can be

nonhamiltonian but 1-tough.

Figure 3.13: A 1-tough maximal planar graph of order 13 with maximum degree 9.
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3.4 Traceability of Locally Hamiltonian Graphs

The material in this section has been published in [34].

I begin this section by addressing Question [2} Is 14 the smallest order of a
connected nontraceable LH graph?

As mentioned earlier, the graph in Figure is a connected nontraceable LH
graph of order 14. Thus it remains to prove that every LH graph of order less than
14 is traceable.

From Theorem [3.3.1]it follows that if G is a connected nonhamiltonian LH graph,
then A(G) > 7.

Note that if w is any vertex in an LH graph, then (N[w]) contains a wheel
with centre w. The following two results concerning wheels will be used extensively

throughout the proof of our main result in this section.

Lemma 3.4.1. Let W be a wheel of order d + 1, d > 3 with centre vertex w and
rim C denoted by vy ...vqvi. Then W has a Hamilton path between v; and v, for
every pair i,j with 1 <i < 5 < d. Moreover every edge of C' lies on some Hamilton

path between v; and v; except for the edge vv; (when j =i+ 1).

Figure illustrates the Hamilton paths in Observation for the cases (b),
(c) and (d) .
We define a k-path cover of a graph G to be a set of £k disjoint paths that contain

all the vertices in G.

Observation 3.4.2. Suppose a graph G contains a wheel W with centre vertex w
and rim C', denoted by vy ... vqv1. Suppose G—V (W) has a k-path cover Qq, . .., Q.
Let a;, b; be the end-vertices of Q;, i = 1..., k. (If Q; is a singleton, then a; = b;.)
Then the following hold.

(a) If k =1 and ay has a neighbour in C, then G is traceable.

(b) Ifk =2 and C contains a pair of distinct vertices {uy,us} such thatu; € N(a;),
1=1,2, then G is traceable.

(¢) Suppose k = 3 and C' contains two distinct pairs of distinct vertices {uy, vy}
and {ug, ug} such that u; € N(a;) fori =1,2,3 and vy € N(by). Then G is

traceable if the set {uy, vy, us, uz} contains two consecutive vertices of C.
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Figure 3.14: The Hamilton paths referred to in Observation [3.4.2]

(d) Suppose k =4 and C contains three distinct pairs of distinct vertices {uy, v, },
{ug,ve, } and {us,us} such that u; € N(a;) fori=1,2,3,4 and v; € N(b;) for
1 =1,2. Then G is traceable if either of the following hold.

(1) The vertices us and vy are the respective successors of uy and vy on C.

(12) The vertices uy and vy are consecutive vertices of C' and the set {ug, va, ug, uy}

contains a pair of consecutive vertices of C.

Note that by “distinct pairs of distinct vertices” we mean that the two vertices
in a given pair are distinct and any two given pairs have at most one vertex in
common.

Lemma implies that an LH graph of order n with maximum degree n — 2
is hamiltonian. Adding a vertex (with any number of edges incident to it) to a

hamiltonian graph results in a traceable graph. We thus get the following.
Corollary 3.4.3. If G is a connected nontraceable LH graph, then A(G) < n — 4.
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Lemma 3.4.4. Suppose G is a connected LH graph. For any w € V(G), let C =
V1Vy ... vquy be a Hamilton cycle in (N(w)) and let X = G — N(w). Let S be the

union of any s components of X. Then the following hold.

(1) If for some v; € N(w), v; has at least one neighbour in each component of S,

then |[Nc(v;) " No(V(S))| > s+ 1 and |[Nc(V(S))]| > s+ 2.
(it) If s € {2,3}, then |Nc(V(S))| > s + 2.

Proof. (i) Since (Ng(v;) U{w}) has at least s + 1 components, and since (N (v;))
is hamiltonian, (N (v;) —{w}) has a Hamilton path P with initial and terminal
vertices on C. Since the maximal subpaths of P that intersect each component
of S are preceded and followed by vertices on C, |No(v;) N Ne(V(S))| > s+1,
and since v; € Neo(V(S)), the result follows.

(ii) Suppose |Ng(V(S))] < s+ 1. Since G is 3-connected, each component of
S has at least 3 neighbours on C, and so, if s € {2,3}, it follows from the
pigeonhole principle that there is some vertex v; on C' that has a neighbour in
each component of S. The result follows from (i).

]

The following observation will be used extensively in the proof of our main result

in this section.

Observation 3.4.5. If H is a connected graph of order n < 5, then one of the
following holds.

(a) H is hamiltonian.

(b) H is nonhamiltonian but traceable and H has a Hamilton path Q with end-vertices

a,b such that d(a) <1, d(b) <2 ifn <4 and d(a) <2 if n=>5.

(¢) H is nontraceable and has a 2-path cover Q1,Qs, such that Q; has an end-vertex

a; of degree 1 for 1= 1,2, and all the end-vertices of Q1 and Q)2 are independent.

(d) H=FKy,.

Figure [3.15 shows the connected nontraceable graphs of order n < 5.
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A e

Figure 3.15: The connected nontraceable graphs of order n < 5.

Theorem 3.4.6. Suppose G is a connected LH graph of order n < 13. Then G is

traceable.

Proof. Suppose to the contrary that G is a connected nontraceable LH graph of
n < 13. Let w be a vertex in G of degree d = A(G), let C = v;...vqv; be a
Hamilton cycle in (N(w)) and X = G — N[w]. By Theorem and Corollary
B.4.3) A(G) € {7,8,9}.

Suppose A(G) =9. Then |[V(X)| < 3. If E(X) # 0, then since G is 3-connected,
it follows from Observation [3.4.2(a) and (b) that D is traceable. If E(X) = 0, it
follows from Lemma [3.4.4(ii), that X has at least two consecutive neighbours on C.
Hence, since G is 3-connected, Observation [3.4.2(c) implies that G is traceable. We
may therefore assume A(G) € {7, 8}.

Now let @)y, ...,Qr be a minimum path cover of X and let a;, b; be the end-
vertices of @Q;, i = 1..., k. (If Q has only one vertex, then a; = b;.) Since Q1, ..., Qk
is a minimum path cover of X, a;a;, b;b;, a;b; ¢ E(G) for i # j.

Claim 1: Ifv; € C, then v; is adjacent to at most 2 components of X.

Proof of Claim 1: By Lemma , v; is adjacent to at most # —1 components
in X, and since A(G) € {7,8}, we need only consider the case where A(G) = 8
and some v; € C' is adjacent to exactly three components in X. Hence if £ = 3
then V(X) = {ai, as9,a3} or V(X) = {a1,as,a3,b3}, otherwise k = 4 and V(X) =
{ai1,as2,a3,a4}. Without loss of generality we may assume {aj,as,a3} C N(vy).
Since A(G) = 8, it follows from Lemma |3.4.4(i) that v; has exactly 4 neighbours
on C. Since {ay,as,a3, w} is an independent set in (N(v1)), and since (N(vy)) is
Hamiltonian, there exists an a; and a; in N(v1), a; # a;, such that a; € N(vg) and
a; € N(vz). But, since G is 3-connected, this contradicts Observation [3.4.2(c) if
k = 3 and it contradicts Observation [3.4.2(d)(ii) if & = 4.

We now consider the k-path cover @1, ..., Qr of X. There are five cases to con-
sider.

Case k = 1.
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Since G is 3-connected, it follows from Observation [3.4.5(a) and (b) that an end-

vertex of (); has a neighbour on C. Hence by Observation [3.4.2] GG is traceable.
Case k = 2.

Since G is 3-connected, it follows from Observation [3.4.5(a), (b) and (c) that there

are two distinct vertices u; and ug on C such that u; is adjacent to an end-vertex

of Q;, 1 =1,2. Hence, by Observation |3.4.2] G is traceable.

Case k = 3.
If X is a star K4, and x its central vertex, then a((/N(x))) = 4, which contradicts
Lemma [3.1.5} since in this case A(G) = 7. Hence X has either 2 or 3 components
and each component of X has at most 4 vertices and at least one component is
a singleton. Thus we may assume that ¢ = {a;} and that a; has three distinct
neighbours on C. Moreover, by Observation [3.4.5(a), (b), (c) and the fact that G is
3-connected, we may assume that either each of as and a3 has at least two neighbours
on C or ay has at least three neighbours on C' and a3 has at least one neighbour on
C'. If a neighbour of a3 (or b3) is the successor or predecessor of a neighbour of a,
(or be) on C, it follows from Observation [3.4.2(c) that G is traceable. Also if two
of the neighbours of a; are consecutive on C', Observation [3.4.2)(c) implies that G is

traceable.

It remains to consider the case where no neighbour of a; is a successor or prede-
cessor of a neighbour of a; (or b;) on C for i # j, and if a; = b;, a; has no consecutive
neighbours on C'.

If A(G) = 7 we may therefore assume that N(a;) = {v1, v3, v5} and since (N (ay))
is hamiltonian, vyvs,v1v5,v3v5 € E(G). Since the set {as, a3} has at least four
neighbours in {vy, v3, vs}, at least one of v, i = 1,3, 5, is of degree 8, a contradiction.

Hence A(G) = 8 and n(V(X)) < 4 and V(X) = {ay,a9,a3} or V(X) =
{a1,as, a3, b3}. But now |[Ne(V(X))| = 4, contradicting Lemma [3.4.4](ii).

Case k = 4.

If n(X) =4, V(X) = {a1,a9,a3,a4} and if n(X) =5, V(X) = {a1, a9, a3, a4,bs}.
Observe also that since §(G) > 3, there are at least 12 edges between V(C') and
V(X). We make the following claims.

Claim 2: [If a; is an isolated vertex in X, and if v; € N(ay), then v;_1 ¢ N(ay)

and vi11 & N(ag). If n(X) =5 and v; € N(ay), thenv;_1 ¢ N(by) and vy ¢ N(by).
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Proof of Claim 2: First suppose V(X) = {ay, as, as, as}.

Suppose to the contrary that {v;,v2} € N(a;). By Claim 1 and since G is 3-
connected, there are at least seven edges between the d — 2 vertices in C' — {vy, v2}
and V(X) — {a1}. By Observation [3.4.2] (d)(ii), no two consecutive vertices on the
path vgvy ... v have neighbours in V(X) — {a;}. Hence at most (%} vertices on
the path vsvy ... v, are neighbours of X — a;. Since d € {7,8}, no more than three

such vertices exist. But then one of these vertices has at least three neighbours in
V(X), contradicting Claim 1.

Now suppose V(X)) = {a1, as, as, as,bs}. Note that in this case A(G) = 7.

If v, € N(ay) and vy € N(by), the argument above is directly applicable. So
assume without loss of generality that {vi,v9} € N(ay). If N(ag) N {v, v} = 0,
then by Observation [3.4.2(d)(ii), N(as) = {vs,vs,v7}. Hence, again by Observa-
tion [3.4.2(d)(ii), No({as, as,bs}) C {vs,vs,v7}. But then each of vs,v5 and v; has
neighbours in three components of X, contrary to Claim 1.

If {v1,v2} C N(ap), then by Claim 1 and Observation[3.4.2(d)(ii), N ({as, as, bs}) =
{vy,v5,v6}. But since 6(G) > 3, this again contradicts Claim 1. Therefore ay, and
by symmetry, as, each has exactly one neighbour in {v;,vs}. Hence by Observa-
tion [3.4.2(d)(ii) N(az,as) = {v1,v2,vs,v6}. This implies that no vertex in V(C) is
adjacent to a4 or by contradicting the fact that G is 3-connected.

Claim 3: A(G) =8 and X = {ay,as,as3,a4}.

Proof of Claim 3: Suppose A(G) = 7. By Claim 1 and since each component of
X has at least three distinct neighbours in V' (C), we may assume without loss of
generality that v; has neighbours in two components of X. Suppose v; is adjacent
to a; and a; where 4, j # 4. Then by Claim 2, {a;, a; }NN({ve,v7}) = 0. Ifn(X) =5
and, say j = 4, then Claim 2 implies that {a;, b4} N N({ve,v7}) = 0. By Lemma
3.4.4{(i), v; has at least three neighbours in V' (C') other than vy and v;, and since v,
is also adjacent to w, d(vy) > 8, a contradiction.

Claim 4: If v; € N(a1) N N(ag), then there exists a v; # v; such that v; €
N(ay) N N(az).

Proof of Claim 4: Suppose {a1,a2} = Nx(v1). By Claim 2, {vg,v3} N {N(a;) U
N(as)} = 0. By Lemma[3.4.4(i) and since A(G) = 8, v; has exactly three neighbours

other than vy and wvg in V(C'). Since (N(v;)) is hamiltonian, one of these three

60



Local Properties of Graphs

neighbours is adjacent to both a; and as.

Claim 5: d(a;) = 3 for all a; € X.

Proof of Claim 5: Suppose to the contrary that d(a;) > 3. Then by Claim 2,
d(a;) = 4 and we may assume without loss of generality that N(ay) = {vy, v3,vs, v7}.
By Observation [3.4.2(d)(i) at most one of {vs, vy, v6, vs} is in N(a;), a; # a1. Since
d(G) > 3 this implies that each a; # a; is adjacent to at least two vertices in N(ay),
contradicting Claim 1.

We can now proceed with the main proof of the theorem.

By Claim 5 there are 12 edges between V(C') and V(X). Hence by Claim 1 we
may assume without loss of generality that Nx(v1) = {a1,a2}. By Claims 2 and
5 we may also assume that either N(a;) = {v1,vs,v5} or N(a;) = {v1,v3,v6}. By
Claim 4, |[N(a;) N N(ag)| > 2. Hence, by Claim 1 we may assume that for at least
one of ag and a4, say a4 has no neighbour in N(a;). Furthermore, by Observation
3.4.2(d)(i), no two neighbours of a4 are both successors (or both predecessors) of
neighbours of a; on C. Also, by Claim 2, no two neighbours of a4 are consecutive
vertices on C. But then d(a4) < 3, a contradiction.

Case k = 5.

In this case X = {a1, as, a3, a4, as} and A(G) = 7. Since d(a;) > 3 there are at least
15 edges between V' (C') and V(X). But then some v; on C' is adjacent to at least

three components in X contradicting Claim 1. O]

I conclude that 14 is indeed the smallest order of a connected, nontraceable LH
graph.

We now turn our attention to constructing nontraceable L H graphs with various
properties. Triangle identification will be used repeatedly. Note that the Goodey
graph (the connected, nontraceable LH graph of order 14 in Figure has maxi-
mum degree 8. Figure shows a different depiction of the Goodey graph G. Note
that d(v1) = 8 and (G — N(vy)) = K 4.

Theorem 3.4.7. There exists a connected planar nontraceable LH graph of order

n with A(G) < 10 for every n > 14.

Proof. First note that the nontraceable LH graph of order 14 in Figure [3.16)] is
planar. This is the same graph as shown in Figure [3.1] redrawn in a more conve-

nient representation. Also note the three vertices of the LH graphs constructed in
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Observation that border the outer plane are suitable for use in triangle identifi-
cation. Label these three vertices u, v and w having degrees 3,4 and 5, respectively.
By identifying u with vs in Figure |3.16, v with ve, and w with us, we get a planar

nontraceable LH graph G with maximum degree of 10. If we start with an LH
graph H from Observation of order k, k > 4, then n(G) = 11 + k. O

Vs

4\%})

s

S

A

Figure 3.16: The order 14 nontraceable LH graph shown in Section 1 in a different
representation. Note that d(v;) =8 and (G — N(v1)) = K1 4.

Theorem 3.4.8. For any integer k > 3 there exists a nontraceable LH graph G
with §(G) = k.

Proof. To construct such a graph we start with the order 14 nontraceable LH graph
H shown in Figure [3.16] Since complete graphs of order greater than 3 are LH, we
can construct the graph G by combining multiple copies of K}, with G by means
of triangle identification in such a way that each vertex of H is used at least once
in a triangle identification procedure. Since a triangle can be used at most once in
triangle identification (Remark , we must use a new triangle for each step.
Specifically, the triangles formed by edges between the vertices in the follow-
ing sets in V(H) can be used: {wvi,u,ve}, {v1,us,v3}, {vi,us,v4}, {v1,u4,v5},
{va, v3,u}, {vs,v4,ur}, {vs,v6,us}, and {vs,ve,us}. This results in the graph in
Figure (in this case K5 was used for the triangle identification, so the minimum

degree is 4). O
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\7
V
Figure 3.17: A nontraceable LH graph with minimum degree 4.

3.5 Regular connected nonhamiltonian L H graphs

The material in this section has been submitted for publication in [35].

Regular connected LH graphs have not yet received much attention in the lit-
erature, except in terms of 6-regular triangulations of the torus [0, [31]. The hamil-
tonicity of such graphs is readily implied by Theorem |3.3.1]

Questions [3] and {4 by Pareek and Skupien [27] regarding regular LH graphs

mentioned in Section 1 are both answered by the following theorem.

Theorem 3.5.1. For every r > 11, there exists a nonhamiltonian LH r-reqular

graph with connectivity 3.

Proof. To construct an 11-regular connected, nonhamiltonian LH graph Ry, we
start with the Goldner-Harary graph G11 shown in Figure [3.18] with the vertices
labeled as shown. We then use triangle identification to combine G11 with other
LH graphs that have the required degree sequences so that the resulting graph is
11-regular. These graphs are shown as graphs H11A4 and H11B in Figure [3.19 and
were constructed by starting with the triangle ({wq,ws, w3}) and then adding edges
linking it to a Ki5 or Ki3 as shown. To limit the degrees of the vertices making up
the K5 or Ki3 subgraphs to 11, edges were removed between some of these vertices,
as indicated in Figure [3.19] It is routine to confirm that these graphs are LH and
that the triangle ({wq, wq, w3}) in each of these graphs is suitable for use in triangle
identification. In particular we create the graph R;; by combining G11 with five
copies of H11A and one copy of H11B, each time identifying the vertices wy, wo, ws
with appropriate vertices in G11. Note that in each step the degrees of the vertices

in (G11 that are identified with wy, wy, w3 of H11A increase by 1, 2, 8, respectively,
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Vertices in G11 | Second graph
Uy, Vg, Vg H11A
Vs, U1, U H11A
V3, Uy, Vg H11A
V1, Vg, V10 H11A
Vg, Us, V11 H11A
Vs, U3, U7 H11B

Table 3.2: Details of 11-regular construction for Theorem |3.5.1]

Figure 3.18: The graphs G11 and G'12 used in to construct regular nonhamiltonian
LH graphs.

while the degrees of those that are identified with wy,ws, w3 of H11B increase by
2,2,8, respectively. Table [3.2] provides the details of the construction. The first
column indicates the first, second and third vertices of the triangle in G11 that
are identified, respectively, with the vertices wi, ws, w3 of the graph in the second
column.

The resulting graph is 11-regular and by Lemma is connected, nonhamil-
tonian, and LH. Since it was obtained by means of triangle identification, it has
connectivity 3. This technique can easily be extended to create r-regular, connected,
nonhamiltonian LH graphs for odd values of r greater than 11. Due to problems
with vertex degree parity, the technique does not work for even values of r when
starting with graph G11. For even values of r greater than or equal to 12 we can
use graph G12 in Figure [3.18 To create a 12-regular, connected, nonhamiltonian
LH graph Ri5 we combine G12 with two copies of H12A, three copies of H12B and
one copy of H12C'. The details are given in Figure and Table [3.3] O
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Edges removed: uu, uu, uus ui; uus uu,

UyUg Uy, Uglls UUg Uglyy Uyl

w
! H12B
U, U; u, uUs U U, ugug\\
1
o o o o /
\\>u1é Uy Up u13 K13 , ‘///

Edges removed: uu, uus uus uu; uu,

UyUg Uslly

Edges removed: uu, uus uu, uu, usu, usus

U s Usg U,Ug

Figure 3.19: The graphs used to construct regular nonhamiltonian LH graphs in

combination with G11 and G12.
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Vertices in G12 | Name of second graph
v3, Us, U7 H12A
Vg, Us, V11 H12A
Vs, U3, U H12B
Vg, Vg, Ug H12B
U4, U1, Vg H12B
U4, V10, V12 H12C

Table 3.3: Details of 12-regular construction for Theorem |3.5.1]

3.6 Longest paths in LH graphs

The material in this section has been submitted for publication in [35].

The title of this section comes from a paper by Entringer and MacKendrick [16].
For n > 4, they define f(n) to be the largest integer such that every connected LH
graph on n vertices contains a path of length f(n). They established the following
upper bound for f(n).

Theorem 3.6.1. [16] f(n) <24y/n/3 +4 forn > 4.

Although Entringer and MacKendrick did not explicitly state it, the following
corollary is an obvious implication of Theorem [3.6.1]

Corollary 3.6.2. lim,,_, @ =0.

The LH graphs constructed by Entringer and MacKendrick to provide the bound
in Theorem 6.1 are nonplanar and there is no restriction on their maximum degree.
However, it is possible to prove a result equivalent to Corollary for planar
graphs with bounded maximum degree. We define p(n, A) to be the largest integer
such that every connected planar LH graph of order n with maximum degree A

contains a path of length p(n, A). I now prove the following result, which is stronger

than Corollary

Theorem 3.6.3. lim,,_, p("r;A) =0 for every A > 11.

Proof. Consider the order 23 graph Gy shown in Figure |3.20, This graph is con-
structed from the Goldner-Harary graph (G11A in Figure and also the first
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graph in Figure by adding 12 vertices using repeated triangle identification
with copies of K4. Clearly A(Gy) = 11 and by Lemma Gy is LH, planar and
nonhamiltonian. Let the K3 subgraphs of Gy that are encircled in Figure be
labeled Hy, Hs, ..., Hg as shown. (i is traceable, but it should be noted that there
is no Hamilton path that starts in H; and ends in H;, i € {1,2,3,4,5,6}. Now
let the graphs Go1,Gope,...,Goe be six copies of Gy, each with the K3 subgraphs
labeled in the same way as in (Gy. Use triangle identification to combine Gy with
Gy, by identifying H; in Gy with H; in Gy, @ = 1,2,3,4,5,6, to create the graph
(1 (This is possible, since each H; contains a vertex that is of degree 3 in G and in
(o). Also note that A(G;) = 11 and that G, is planar. Since each Gj; contains a
vertex cutset of order 5, it follows that a longest path in G omits one H; subgraph
in four of the subgraphs represented by G ; so that the longest path in G; has length
23+2x20+4x 17 = 131, while n(G;) = 2346 x 20 = 143. One can now repeat the
procedure by combining GGy with 6 x 5 copies of G in the same way to create the
graph Ga. A longest path in G5 contains 2342 x20+4x174+2x 2046 x4 x 17 = 579
vertices, while n(Gy) = 2346 x 2046 x 5 x 20 = 743. This process can be continued
indefinitely. By Lemma[3.2.2 (b) the graph G}, is planar and A(Gj) = 11, while the
longest path in Gy contains p, = 2342 x 204+4 x 17+ 3% (2x 2046 x 471 x 17)
vertices, while n(Gy) = 23 + 3¢ 6 x 5771 x 20. Tt is then easy to show that

Pk
n(Gk)

tended to greater values for the maximum degree by combining the graph G} with a

limy,_ oo = 0 and the result follows for A = 11. The result can easily be ex-
planar graph with the required maximum degree by triangle identification with one

of the outer triangle subgraphs. O]

Note that Entringer and MacKendrick’s limit only implies the existence of con-
nected nontraceable LH graphs of order greater than or equal to 200. However,
Theorem [3.4.6| states that the smallest connected nontraceable LH graph has order
14, so there is much room for improvement for low values of n. Our next theorem
provides an upper limit for f(n) that is smaller than the one given by Entringer and

MacKendrick for n < 427 and implies that f(n) < n for every n > 15.
Theorem 3.6.4. f(n) < [(2/3)n] + 4.

Proof. Consider the graph Gy shown in Figure [3.21] This is the Goldner-Harary
graph shown in Figure (a), redrawn to emphasize the fact that the six vertices
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Go

Figure 3.21: The graphs Gy and G used in Theorem [3.6.4]

of degree 3 are connected to each other by a cutset of 5 vertices. Now choose any
vertex of degree 3, call it vy, and using Lemma [3.2.2 use triangle identification to
combine Gy with three copies of K4, each time using vy and two of its neighbours,
to create the graph G;. G now has a vertex cutset of order six (v; is now also
in the cutset), the removal of which results in eight components. In general, the
graph G;_1 can be combined with three copies of K, using any vertex of degree 3 in
V(G;_1), call it v;_1, to create the graph G;. By Lemma [3.2.2] (a) and (b), G; is LH
and planar. Also, GG; has a vertex cutset of order 5 + ¢, the removal of which results
in a graph consisting of 6 4 2¢ isolated vertices. It follows that a longest path in G;
has no more than 2(5 4 i) + 1 vertices, and that n(G;) = 11 + 3i. Let g(n) be the
number of vertices in a longest path in a graph on n vertices constructed in this way
(where the last vertex v; to be used in triangle identification may have been used

once, twice, or three times). Then ¢(n) < [(2/3)n] + 4. O
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Nested Locally Hamiltonian
Graphs

4.1 Introduction

We call a graph G locally locally connected (written LLC or L2C') if (N(v)) is an
LC graph for every v € V(G). We extend this concept in a natural way to L*C
graphs for k = 0,1,2,... (where L°C simply means connected). L¥H graphs are
defined analogously. (Formal definitions for these concepts are provided in Section
13)

For each k > 0, the class of L¥ H graphs contains an interesting subclass, namely
the class of SC' (k + 2)-trees. (This is shown in Section [4.3]) Recall that the
class of SC 2-trees are exactly the maximal outerplanar graphs, and are therefore
L°H , while the SC 3-trees are exactly the chordal maximal planar graphs, and are
therefore LH - See Corollaries 2.1.5] and B.1.7

Our interest in L¥H and L*C graphs was sparked by Theorem by Oberly
and Sumner and their conjectured extensions of the theorem (Conjectures and
1.2.9).

An LH graph is locally 2-connected, so the following conjecture is weaker than

the case k = 2 of Conjecture [1.2.8|
Conjecture 4.1.1. If G is a connected K, 4-free LH graph, then G is hamiltonian.

Let G be a connected, nonhamiltonian LH graph of order n. By Lemma [3.1.2]

A(G) <n—3. If G contains an induced K4 with v as its central vertex, then the
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fact that (N(v)) is hamiltonian implies that d(v) > 8, so that n > 11. Thus, if Con-
jecture is true, it would imply that every connected, nonhamiltonian, locally
hamiltonian graph has maximum degree at least 8 and order at least 11. Pareek
and Skupien [27] proved that the minimum order of nonhamiltonian, connected LH
graphs is indeed 11. It is shown in Section that there are four nonhamiltonian,
connected LH graphs of order 11 and they all have maximum degree 8. Pareek
[26] claimed that every nonhamiltonian connected LH graph has maximum degree
at least 8, but there are flaws in his “proof” that I have not been able to rectify,
as discussed in Section [3.3] If Conjecture is true, it would immediately prove
Pareek’s (as yet unproved) claim.

I shall show that if G is an L¥H graph that is L™C for m = 0,1,...,k — 1,
then G is locally (k + 1)-connected. This motivated us to consider the following

conjecture, which extends Conjecture and is weaker than Conjecture [1.2.8|

Conjecture 4.1.2. If G is an L*H graph that is L™C for m =0,1,...,k — 1 and

G contains no induced K j+3, then G is hamiltonian.

Remark 4.1.3. In order to exclude trivial cases in our study of the hamiltonicity
of L*H graphs, I added the requirement that they be L™C for k = 0,1,...,k — 1.
This is analogous to limiting investigations on the hamiltonicity of LH graphs to
the connected case. The graph consisting of two copies of K5 sharing a common
vertex is an example of an LLH graph that is connected but not LC and is trivially

nonhamiltonian.

Graphs satisfying the hypothesis of Conjecture have a rich and regular
structure. In Section [£.2] I study LLH graphs that are connected and LC' and I
develop means of constructing and manipulating such graphs to obtain ones with
prescribed properties. I show that the minimum order of a nonhamiltonian LLH
graph that is connected and LC' is 13. Note that if Conjecture [4.1.2] is true, it
would imply that a nonhamiltonian graph that is LH, L*H and L™C for m =
0,1,2,...,k—1, has maximum degree at least 6 4+ 2k and hence order at least 9+ 2k
(by Lemma. In Section , for each £ > 1, I construct nonhamiltonian graphs
of order 9 + 2k that are L™H for m = 1,2, ...k, as well as nonhamiltonian L*H
graphs of order 9 + 2k that are not L™ H for m =1,2,...,k — 1. It is worth noting
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that these graphs are locally (k 4+ 1)-connected and all contain an induced K 3 as
Conjecture requires, but as will be shown, do not contain an induced K j4.
This implies that if the Oberly-Sumner conjecture is true, it would be best possible
in a very strong sense.

I also construct a sequence of L¥H graphs that are L™C, m = 0,1,...,k — 1
such that the detour order becomes a vanishing fraction of the order of the graph.

Finally, I investigate the NP-completeness of the HCP for L¥H graphs that are
L™C for m=0,1,...,k — 1 and for graphs that are L™H for m=1,2,... k.

4.2 Locally locally hamiltonian graphs

Definition 4.2.1. A graph G is locally locally hamiltonian (LLH or L>H ) if (N (v))

is locally hamiltonian for every v € V(G).

The following is an alternative formulation of the above definition and is often

more convenient.

Definition 4.2.2. A graph G is locally locally hamiltonian (LLH or L*H ) if (N (v)N

N(w)) is a hamiltonian graph for every pair of adjacent vertices u,v € V(G).

Since (Nnwy(u)) = (N(v) N N(u)), it is clear that these two definitions are
equivalent.
Note that a hamiltonian graph has order at least three, since it contains a Hamil-

ton cycle.

Lemma 4.2.3. Let G be a connected, LLH graph that is also LC'. Then G is
4-connected (and hence §(G) > 4).

Proof. Since connected LH graphs are 3-connected with minimum degree at least
3, it follows that LC, LLH graphs are locally 3-connected and are therefore 4-
connected by Theorem [3.1.4] and hence have 6 > 4. O

In Section [3.2]T developed the concept of triangle identification to combine locally
hamiltonian graphs. I now show that a similar technique can be used to combine

LLH graphs. We refer to it as K,-identification.
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Construction 4.2.4. (Ky-identification) Fori = 1,2, let G; be an LLH graph that
contains a 4-clique X; such that for each pair of vertices x;, ), € V(X;), there is a
Hamilton cycle in (N(x;) NN (z)) that contains the edge X;—{x;, x}. Now suppose
V(X)) = {v1,v9, 03,04}, and V(Xs) = {uy, us, ug,us}. Create a larger graph G by
identifying the vertices v; and uj, j = 1,2,3,4 to a single vertex w;, while retaining
all the edges present in the original two graphs (see Figure . We say that G s
obtained from G and Gy by identifying suitable K, ’s.

G,
. v,
/
| @ -
’ v
3
\; 7 U u

Figure 4.1: The K, -identification procedure.

The following theorem is a special case of the more general Theorem

presented and proved in Section [4.3]

Theorem 4.2.5. If two LC, LLH graphs Gi and Gy are combined using K-
identification to form a larger graph G, then G is also LC and LLH.

Our next result follows immediately from Definition and Theorem [3.1.3
Lemma 4.2.6. If G is an LC', LLH graph that is not LH, then A(G) > 11.

Proof. G has a vertex v such that (N (v)) is LH but not hamiltonian. Hence d(v) >
11. [

Theorem 4.2.7. Let G be a connected nonhamiltonian LC, LLH graph of minimum
order. Then n(G) = 13.

Proof. Suppose to the contrary that n(G) < 13. If G is not LH, then by Lemma
there exists a v € V(G) such that d(v) > 11. Then by Theorem [3.4.6] if
n(G) = 12, with A(G) = 11, (N(v)) is traceable and hence G is hamiltonian. We
can therefore assume G is also LH.

Let w € V(G) be a vertex of maximum degree, and let C' = vy ...va_10g be a
Hamilton cycle of (N(w)). Let X = (V(G) — N[w]) with V(X) = {z1, 29, ...,2,}.
Note that 6(G) > 4 by Lemma [4.2.3] This leads to the following claims.
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Claims If the vertices of X form an independent set, and G is nonhamiltonian,

then the following hold (indices of v taken modulo A(G)).
1. If A(G) =n — 3, then {v;,vi41} & N(x;).

2. If A(G) = n — 3, then it is not the case that v; € N(z;) and v;41 € N(wy),
JF# k.

3. If A(G) = n—4, then it is not the case that {v;, v;4+1} C N(xy) and {v;,vj11} C
N(z,,), where i # j, and k # m.

The Hamilton cycles that can be found if these conditions are not met are shown in

Figure [4.2]

Xj X X, X1 X1
ﬂ X ff
f XL 1
X \‘ Xq Xm
Claim 2

Claim 1 Claim 3

Figure 4.2: The Hamilton cycles that prove the claims in Theorem [4.2.7]

Since G is LH, n(G) > 11 by Theorem B.1.3, A(G) < n — 3 by Lemma [3.1.2]
and that A(G) > 7 by Theorem [3.3.1]

Case 1: n(G) =11 and A(G) = 7.

[V(X)| = 3, so if comp(X) =1, X is traceable and G is obviously hamiltonian.
If comp(X) = 2, let the components of X be the edge z175 and the vertex xs.
Because |N(z3) N N(w)| > 4, {vi,vi41} C N(x3) for some i € {0,1,...,6}. Since
|N(z3) N N(w)| > 4, x3 has two consecutive neighbours on C, and hence G has a
Hamilton cycle similar to the one in Claim 1 (with z; = z3 and the edge z172 in the
place of z). Therefore comp(X) = 3. Because N(z;) N N(w) > 4, i = 1,2,3, each
vertex z; has two successive neighbours in N(w). By Claim 3 we have {v;,v;11} C
N(z1) N N(x2) N N(z3) for some j € {0,1,...,6}. But then {w,z,x, 23} is an
independent set in N(v;), so that d(v;) > 8.

Case 2: n(G) = 11 and A(G) = 8.

[V(X)| = 2, so if comp(X) =1, X is traceable and G is obviously hamiltonian.

If comp(X) = 2 then by Claim 1 we have without loss of generality that N(z,) =
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{v1,v3,v5,v7} and then by Claim 2 it follows that N(xg) = N(z1). Since G is LLH,
(N(z1)) is LH and since d(z1) = 4, we get ({vy, vs, vs,v7}) = Ky, so that d(v;) = 8,
i =1,3,5,7. Since A(G) = 8, vy is not adjacent to either of vs, v;, otherwise that
vertex would have degree greater than 8. If vy ~ vy, then vy x1v;V5V522V3VWVVV, 18
a Hamilton cycle in G. Hence | N (v1)NN (vq)| = 2 contradicting that (N (vy) NN (v2))
is hamiltonian.

Case 3: n(G) = 12.

From Theorem we know that if n(G) = 12 and G is LH and nonhamil-
tonian, then A(G) = 9. Again, |V(X)| = 2 and if comp(X) = 1, X is traceable
and G is clearly hamiltonian, so we can assume comp(X) = 2. By Claim 1, we can
say without loss of generality that N(z1) = {vy, vs, vs,v7} and it follows by Claim 2
that N(z2) = N(xy). Since G is LLH, (N(z4)) is LH and since d(x;) = 4, we get
{({v1,v3,v5,v7}) = K,. With the exception of vgvg there are no edges in G between
vertices in {vy, vy, vg, Us, Vo } if G is nonhamiltonian, as will now be shown.

If vovy € E(G
If vovg € E(G

), then vz v304VWVEVsToV7V8VEY, 18 @ Hamilton cycle in G.
(@), then v1x1V3V4V5T2V7V6V2WVgVEV; is & Hamilton cycle in G.
If vyvg € E(G), then vy 1v30405120706wV2VsV0v; 18 @ Hamilton cycle in G.
If vovy € E(G), then vy 21v30405220706wV8U0v2v; is a Hamilton cycle in G.
If vyvg € E(G), then vyvv329050406wvev8v721v1 18 a Hamilton cycle in G.
If vyvg € E(G), then vy z1v70505120302wV4v800v; 18 @ Hamilton cycle in G.
If vyvy € E(G), then v1vv3290506w04v9v8v721v1 i1s a Hamilton cycle in G.
if vgug € E(G), then vy21v7220504v302wV6v809v1 18 @ Hamilton cycle in G.
If vgvg € E(G), then vy vwugugvgvrravsvyvszivy is a Hamilton cycle in G.
Since 0(G) > 4, it follows that each of vy, vy, vg, vs, vg has an additional neighbour
in the set {vy,vs,vs,v7}. From the pigeonhole principle it follows that at least one
of vy, v3, vs,v7 has degree at least 10.

It follows that n(G) > 13.

To see that n(G) = 13, note that the graphs in Figure (a) and Figure are

examples of nonhamiltonian LLH graphs of order 13. O

Since we know that the smallest connected nontraceable LH graph has order 14

(Theorem [3.4.6)), the next result is somewhat surprising.
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Theorem 4.2.8. Let G be a connected nontraceable LC, LLH graph of minimum
order. Then n(G) =14 and if G is not LH, then G has a two-path cover.

Proof. First note that the graph in Figure (b) is a nontraceable, connected LC,
LLH graph of order 14. We already know that a connected nontraceable LH graph
has order at least 14, so we can assume G is not LH. Then there is a vertex v € V(G)
such that (N(v)) is LH but not hamiltonian. It follows that d(v) > 11. Since all
LH graphs of order less than 14 are traceable, (N[v]) is hamiltonian, and therefore
if n(G) = 13, G is traceable, and if n(G) = 14, G has a two-path cover. ]

Note that the graphs in Figure [4.3| are LLH, but not LH. It is therefore not
surprising that (N(w)), where w is the vertex shown in Figure 1.3} is the Goldner-
Harary graph, which is the smallest connected nonhamiltonian LH graph [27]. A
method to construct a connected nonhamiltonian LLH graph of order 13 that is

also LH can be found as a special case of the graphs constructed in the proof of

Theorem 4.3.241

N N7

<N <
v \‘b. .:’ "» -tlp"‘lb» 41’
SRR S
/\si@\v N7
Vo

Figure 4.3: (a) nonhamiltonian and (b) nontraceable LLH graphs of orders 13 and
14, respectively.

If G is any nonhamiltonian LH graph, then A(G) < n — 3 (Lemma 3.1.2), and
if G is a nontraceable LH graph, then A(G) < n — 4 (Corollary [3.4.3).

However, if G is a connected nonhamiltonian LC, LLH graph, then A(G) can
be as large as n — 1.

The graph in Figure [£.4] is an example of a nonhamiltonian LC, LLH graph of
order 15 for which the maximum degree is 14. To see that 15 is the smallest order
for which this is possible, note that if G is LLH with A(G) = n — 1, there exists
a vertex v € V(@) such that d(v) = n — 1 and (N(v)) is LH and nontraceable,
otherwise GG is hamiltonian. Therefore |N(v)| > 14 and n(G) > 15.
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The vertex v is
adjacent to all
other vertices.

Figure 4.4: A nonhamiltonian LLH graph of order 15 with maximum degree 14.

The following theorem is a special case of Lemma [4.3.14| that is proved in Section
4.0l

Theorem 4.2.9. Let Gy be a connected LC', LLH graph that contains a vertex v;
such that d(vy) = 4. Then (N(vy)) = K4 and v can be used four times in K-
identification, once in combination with each of the four distinct subsets of three of

its neighbours. However, no 4-clique may be used more than once.

Theorem can be used to construct nonhamiltonian and nontraceable LC,
LLH graphs, such as the two in Figure 4.3 These graphs were constructed by
combining two copies of K5 and then repeated combinations using the two vertices

of degree four and multiple copies of K.

4.3 Locally k-nested hamiltonian graphs

In this section I generalize the concepts introduced in the first section. The intuitive
description of a locally k-nested hamiltonian graph G is that for any set of k mutually
adjacent vertices {vy,vg, ..., v} in V(G), the induced graph on the neighbourhood
of vy in the neighbourhood of v;_; in the neighbourhood of v;_5 in the neighbourhood
of ... in the neighbourhood of v; is hamiltonian. A more compact formal definition

is given below.

Definition 4.3.1. For k > 1, a graph G is locally k-nested hamiltonian (L¥H ) if for

any subset {vy,...,vr} of k mutually adjacent vertices in G, (N(vy) N --- N N(vg))
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15 a hamiltonian graph.
The definition for locally k-nested connected graphs is similar:

Definition 4.3.2. For k > 0 a graph G is locally k-nested connected (LEC) if for
any subset {vy,...,vx} of k mutually adjacent vertices, (N(vy) N---NN(vg)) is a

connected graph. The case where k = 0 simply means the graph is connected.

In the above definitions, the requirement that (N(vq) N ...N N(vg)) is a graph
implies that it has at least one vertex (since the empty set is not a graph). This

implies the following lemma.

Lemma 4.3.3. If G is a graph that is L™C for m = 0,1,...k and n(G) > k + 2,
then every vertex v € V(G) lies in a (k + 2)-clique.

Proof. The proof is by induction on k. If £ = 0, then G is a connected graph of
order at least 2, so every vertex of GG lies in a K5. Thus the result holds for £ = 0.
Now suppose k£ > 1 and let v be any vertex in G. Then, by the induction hypothesis,
v lies in a (k+1)-clique X. Since G is connected and n(G) > k42, there is a vertex
in G — V(X) that is adjacent to a vertex, say x, in X. Since G is LC, (N(z1))
is connected, so there is a vertex in (V(G) — V(X)) N N(z;) that is adjacent to a
vertex, say s, in X — xy. Thus N(z1) N N(x2) contains a vertex in G — V(X). If
k = 1, then X is contained in a 3-clique, so then the result is proved. If k > 2,
then G is LLC, so then (N(x1) N N(z2)) is connected and hence there is a vertex in
(V(G)—=V(X))NN(x1)NN(x2) that is adjacent to a vertex, say xs, in X —{z1, x2}.
Carrying on in this manner, we eventually find k£ vertices x,xs, ..., x; such that
there is a vertex z in (V(G) — V(X)) N N(z1) N---N N(xy) that is adjacent to the
only remaining vertex in X —{xy, zo,...,2x}. Then ({z} UV (X)) is a (k+2)-clique

that contains v. O
The corollary follows immediately from the proof of Lemma |4.3.3]

Corollary 4.3.4. If G is a graph that is L™C form =0,1,....k and n(G) > k + 2,
then any edge uwv € E(G) lies in a (k + 2)-clique.

I will now examine some of the implications of the definition for the structure of

L¥H graphs that are L™C for m = 0,1,....k — 1.
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Lemma 4.3.5. If G is an LFH graph that is L™C for m = 0,1,....k — 1, then
6(G) >k +2.

Proof. From Lemma [4.3.3/and since an L*H graph is also L*C, it follows that every
vertex v € V(G) lies in a (k + 2)-clique and therefore there exist £ — 1 vertices
Uq, ..., ug such that N(v) NN (u;)N---NN(ug_1) is not an empty set. That implies
that (N(v) N N(up)N--- N N(ug—1)) is a hamiltonian graph and hence has order at
least 3, and therefore |[N(v)NN(uy)N---NN(ug—1)| > 3, and the result follows. [

The next two corollaries follow immediately.

Corollary 4.3.6. The smallest L*H graph that is L™C for m = 0,1,....k — 1 is
Kiys.

Corollary 4.3.7. If G is an L*H graph that is L™C for m = 0,1,....k — 1 and
d(v) = k+2 for some v € V(G), then (N(v)) = Kjyo.

Repeated application of the next theorem shows that Definition is equiva-
lent to the intuitive description of L*H graphs. This theorem will also be used in

some of the proofs that follow.

Theorem 4.3.8. Let G be an LFH graph that is L™C form =0,1,....k — 1. Then
for any v € V(G), (N(v)) is an L*YH graph that is L™C for m =0,1,....k — 2.

Proof. Since G is L™C for m = 0,1,...,k (because G is also L*H), it follows from
Lemmathat v lies in a (k+2)-clique. Let {uy, ug, ..., up_1} be any set of k—1
mutually adjacent neighbours of v. Then (N(v) N N(u;) N -+ N N(ug_q)) is hamil-
tonian, since G is L*H. Since (Ng(v) N Ng(u1) N -+ N Ne(up—1)) = (Nvgy (w1) N
Nin)y (u2) (- OV Niy(oyy (ur—1)), it is clear that (Nivew)y(u1) N Ny (u2) N0
N(N() (ug—1)) is hamiltonian. Hence (N(v)) is LF"'H. Similarly, (N (v)) is L™C
form=0,1,... k—2. n

Theorem 4.3.9. Ifk > 1 and G is an L*H graph that is L™C form =0,1,...,k—1,
then G is (k + 2)-connected and locally (k + 1)-connected.

Proof. The proof is by induction on k. The result obviously holds for £ = 1. Now
let £ > 2, and let v € V(G). Then by Theorem m, (N(v)) is L*¥'H and L™C
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for m = 0,1,...,k — 2. Hence, by the induction hypothesis, (N(v)) is (k + 1)-
connected. Hence G is locally (k + 1)-connected and therefore, by Theorem [3.1.4}
G is (k + 2)-connected. O

In order to deal with L*H graphs we’ll need a way to construct and manipulate
such graphs for any value of k. The following construction, which is a generalization

of triangle identification, provides the necessary tool.

Construction 4.3.10. (K} o-identification) For i = 1,2, let G; be an L*H graph
that contains a (k + 2)-clique X; with V(X1) = {v1,v2, ..., 0542} and V(Xs) =
{uy,us, ..., upro}. Furthermore, suppose that for each distinct k-clique Y; in X,
there is a Hamilton cycle of (\,ey(y;) N(v) that contains the edge (X; — V(Y)).
Crreate a larger graph G by identifying the vertices v; and w;, j =1,2,...,k+2 to
a single vertex w;, and by retaining all the edges present in the original two graphs.
Figure llustrates the procedure for k = 2. We say that G is obtained from G

and Go by identifying suitable Ky yo's.

Theorem 4.3.11. If two L*H graphs G and Gy that are L™C form =0,1,...,k—1
are combined using Ky o-identification to form a larger graph G, then G is also an

L*H graph that is L™C form=0,1,....k — 1.

Proof. Let X; be a (k+2)-clique in Gy, for i = 1,2. Let V(X)) = {v1,v2, ..., 0542} C
V(G1), V(X2) = {uy,us,...,upr2} C V(Gsy), and let W = {wy, ws, ..., wra} be
the vertices in G obtained by identifying v; with u;, ¢ = 1,2,...,k + 2. Observe
that if Z is a clique in G that contains a vertex in G1 — W, then ((,cy(,) N(a)) is
contained in V (G).

It is therefore only necessary to consider k-cliques in W. Let Z be a k-clique in W
and let e be the edge (V(W)—V(Z)). Then, by the definition of K} o-identification,
there is a Hamilton cycle C; in ((,., Ng,(2)) containing the edge e, for i = 1,2.
Let Cy = v, Pv,,v; and Cy = w;Qu,,,u; where the end vertices of e are v; and v, in G
and w; and u, in Gy. Then C' = w Pw,Qu; is a Hamilton cycle of (.., Na(2)).

Similarly, when checking that G is L™C, m = 0,1,2,...,k — 1, we need only
consider m-cliques in W. For any m-clique in W with vertices wy, ws, ..., w,,, both

(Ng,(v1) N ---N Ng,(vy,)) and (Ng,(u1) N -+ N Ng,(uy,)) are connected. It then
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follows that (Ng(wy) N--- N Ng(w,,)) is connected, since the vertices in W induce

a complete graph. O

Note that Kj,o-identification of two LYH, L™C, m = 0,1,2,...,k — 1 graphs
where 0 < ¢ < k does not in general result in an L?H graph. For example, the graph
in Figure (a) was constructed using multiple copies of K3, and is L?H and LC,
but is not LH.

The following construction will be required for Theorem [4.3.26]

Construction 4.3.12. (K}, o-identification within a graph) Let G, be an L*H graph
that, fori = 1,2, contains disjoint (k+2)-cliques X; with V(X;) = {v1,v2, ..., Ugsa}
and V(X3) = {uy,us,...,uxkro}. Furthermore, suppose that for each distinct k-
cliqgue Y; in X;, there is a Hamilton cycle of ﬂvevm) N(v) that contains the edge
X; = V(Y;). Finally, let N(V(X1) N N(V(X3) = 0. Create graph G by identifying
the wvertices v; and uj, j = 1,2,...,k + 2 to a single vertex w;, and by retaining
all the edges present in the original graph. We say that G is obtained from G, by
identifying suitable Kjo's within G,.

Corollary 4.3.13. Let G, be an L*H graph that is L™C form =0,1,....k —1 and
let G be a graph that was obtained by identifying suitable Kiio’s within G,. Then
G is also an L*H graph that is L™C for m = 0,1, ...,k — 1.

Proof. We use the same notation as in Construction 4.3.12, The argument used in
the proof of Theorem [4.3.11| is directly applicable here as well, since N(V(X7)) N
N(V (X)) = 0. =

Lemma 4.3.14. Let G be an LFH graph that is L™C for m = 0,1,....k — 1 and
that contains a vertex vy such that d(vy) = k + 2. Then (N(vy)) = Kiio and vy
can be used k + 2 times in K o-identification, once in combination with each of the

k4 2 distinct subsets of k + 1 of its neighbours.

Proof. Let Ng,(v1) = {va,v3,...,0k13}. Throughout this proof, the vertices {vy, vs,
..., Ugt+3} that are used in Ky o-identification will retain their labels. Since d(v,) =
k + 2, it follows from Corollary that (Ng,(v1)) = Kjio. Let Ga,Gs, ..., Giis
be the graphs that will successively be used in Kj o-identification to form the

graphs G12,G123,...,G12, . kys. Furthermore, without loss of generality, let G;
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be combined with Gy ;1 using the (k + 3)-clique ({v1,ve,...,vpy3} — {vi}), i =

.....

2,3,...,k+3 to create the graph G »__;. First consider using K} o-identification to

combine G4 with G, to create the graph G o and let {uy, ua, ..., up} = {v1,v2, ..., Ugpys}—
{va} —{vi, v}, where {v, v} C {v1,v9, ..., vp3} — {02}, | # m. It suffices to show
that in every Ky o-identification step, the graph (N (uy) N N(ug) N--- N N(uyg)) has

a Hamilton cycle that includes the edge v;vy,. Since N(u1) N N(ug) N -+ N N(ug) =
{va, v, v}, (N(u1) N N(ug) M-+~ N N(ug)) = K3, and it clearly follows that the
edge vvy, is part of the Hamilton cycle in (N(uj) N N(ug) M-+ N N(ug)). Note
that after the Kj o-identification is done, the edge v;v,, in the Hamilton cycle in
(N(up) N N(ug) N---N N(ug)) is replaced by a path containing only vertices that
originated from (5. This argument applies to any choice of [ and m.

We now proceed with the next Ky o-identification, that between G5 and G3 to
create the graph G 23, and continue in this manner. Consider the case in which we
combine G ;-1 with G; to form the graph Gy
{v1,v9, ..., Vi—1, Vi1, - oo, Uy} C V(Gha..i—1) with vertices in V(G;). Without loss
of generality let {uy, ug, ..., up} = {v1, v, ..., 01,011, .., Vkr3} — {v1, U }, Where
{vi, v} C {v1, 09,0 Vi1, Vs 1, -, Ukas ), [ # m. Note that N(v;) N V(G;) = 0 for
alli =2,3,...,k+3. It follows that N (u;)NN (uz)N- - NN (ug) = {vg, Uy, v; JUXUY
where X C V(G)), Y € V(G,,) if I,j < i, respectively, and X = () and Y = 0 if
l,j > 1, respectively. It follows that in (N(vy) N N(uiy) N N(ug) N -+ N N(ug))
there are two paths connecting v; and v,,: one path includes v;, and the other
path is the edge vv,, (see Figure . Also, by inductive hypothesis the graph
(N(v1) N N(uq1) N N(ug) N--- N N(ug)) is hamiltonian. Therefore in Gy, ;, the
Kjio graph induced by {vy,ve,...,v;_1,Vit1,...,Vky3} is suitable for use in Kjo-

identification. N

Figure 4.5: The graph (N(u1) N N(uz) N--- N N(ug)) used in the proof of Lemma
4314
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Remark 4.3.15. A (k+ 2)-clique with vertices vi, vy, . .., Vg2 in an LKH graph G,
can only be used once in Ky o-identification to combine Gy with an L*H graph Gs.
The reason is that before Ky o-identification the edge vii1vg1o is part of a Hamilton
cycle in (Ng,(v1) N Ng,(v2) N -+ 0 Ng, (vx)). After Ky io-identification, the edge
Uk+1Uk+2 1S Teplaced in the Hamilton cycle in (Ng(v1) N Ng(v2) N -+~ N Ng(vg)) by a
path with vertices that originated from GS.

At this point we have the necessary tools to start investigating the more inter-
esting aspects of L* H graphs that are L™C for m = 0,1, ...,k — 1. I start with the
relationship with k-trees.

Dirac [I5] proved the following (the original formulation has been modified to

bring it into line with the terminology used here):

Theorem 4.3.16. [I5] A graph G is a chordal graph if and only if every minimal

cutset of G is a clique.

From this we readily get the following corollary which will be required for the

proof of Theorem (4.3.20
Corollary 4.3.17. If G is a k-tree, then G is a chordal graph.

Rose [28] proved the following theorem that will be needed for the proof of
Theorem (4.3.200

Theorem 4.3.18. [28] Let G be a k-tree and let w and v be any pair of nonadjacent

vertices in G. Then there are exactly k vertex disjoint u - v paths in G.

Observation 4.3.19. If a given k-clique X is used r times (r > 0) in the construc-

tion of a k-tree G, then G — V(X)) has r + 1 components, each of which contains

one vertez of (,cy(x) V().

Theorem 4.3.20. For k > 3 a k-tree G is an LF=2H graph that is L™C for m =
0,1,...,k—3if and only if G is a SC k-tree.

Proof. First, suppose G is a k-tree that is not a SC k-tree. Then some k-clique X
was used more than once in the k-tree construction of G. By Observation [4.3.19]

there are three independent vertices w1, u2, uz in () ey (x) N (). Now let Y be any

(k —2)-clique in X and let {vy,v9} = V(X) —V(Y). By Theorem {4.3.18| there are
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exactly k internally disjoint paths between any two vertices in {uy,us, ug}. Each
such path contains exactly one vertex of X. Since {vi,v,} are the only vertices
of X in (,cyy) Ne(y), any cycle in (), oy y) Ne(y)) misses at least one of the
vertices in {u1, uz, uz}. Thus ((,cyy) Ne(y)) is not hamiltonian and hence G is
not L¥~2-hamiltonian.

Now let G be a SC k-tree of order n. We prove by induction on n that G is
LF2H. If n = k+ 1, then G = Kj, which is obviously L*"2H. Now assume
n > k + 2. Let z be the last vertex added in the k-tree construction of G. Then
G — z is a SC k-tree of order n — 1 and (N(z)) is a k-clique in G — z that has
not been used in the k-clique construction of G — z. Let N(z) = {vy,...,v}. By
Observation , (Myen(z) Na—=(v)) consists of a single vertex, say vgi1. By our
induction hypothesis, G — z is LF"2H. Thus, to prove that G is L*"2H, we only
need to show that the k-clique (N(z)) is suitable for k-clique identification.

Now consider any (k — 2)-clique Y in (N(z)). Then (), cy ) Ne-:(y)) has a
Hamilton cycle C, since G—z is L*¥~2H. We may assume that V (Y) = {vy, ..., v5_2}.
Then {vg_1, Vg, vy} C ﬂer Ne_.(y) and vy is the only common neighbour of
vp—1 and vy, in ﬂyEY Ne_.(y). Suppose C' does not contain the edge vj_jvx. Then
ﬂer Ng_.(y) contains a v;_; — vy path that contains neither the edge vi_1vx nor the
vertex vi,1. Let P be a shortest such path. We note that v;_; and vx do not have a
common neighbour on P, so P has at least four vertices and, by the minimality of P,
the cycle vyvg_1 Py is chordless, contradicting Corollary [£.3.17] Hence C' contains
the edge vi_1vk, so (N(z)) is suitable for k-clique identification. This proves that G
is LF=2H. O

The proof of the next theorem will require the following lemma:

Lemma 4.3.21. If G is an L*H graph that is L™C, m = 0,1,...,k — 1 with
v e V(G) and n(G) > k+4, and (N(v)) is a complete graph, then G — v is also an
L*H graph that is L™C, m =0,1,...,k — 1.

Proof. Only the neighbourhoods of vertices adjacent to v are affected by the removal
of v from G, so to show that G—v is L¥ H, we need only consider the k-cliques that are
contained in (N (v)). Let X be a k-clique in (N(v)). Then (,cyx) Na(x) contains

the vertex v and hence contains a Hamilton cycle C' that contains a subpath uyvus,
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with uy,us € N(v) — V(X). Since (N(v)) is a complete graph, ujus is an edge in
ﬂmev(X) Ng_,(u). Replacing the path uyvus with the edge ujusy yields a Hamilton
cycle of ey (x) Na—o(u). Hence G — v is LVH.

It is also easily seen that G — v is connected, and if 1 < m < k —1 and Z is
any m-clique in (N(v)), then (,cy() Ne-v(v) is connected. Hence G is L™C for
m=20,1,...,k. O

We note that a graph that is L™H for m = 1,2,...,k has minimum degree at
least k + 2. Our next result follows from the fact that the neighbourhood of any

vertex of degree k + 2 in such a graph induces a complete graph.

Corollary 4.3.22. If G is a connected graph that s L™ H form =1,2,... k, and
a vertex v of degree (k + 2) is removed from G, then G — v is also an L™H graph
form=1,2,... k.

Theorem 4.3.23. For each k > 1 there exists an LFH graph that is L™C for
m=0,1,....k —1 but that is not L'H for 0 <1 < k that has order 9+ 2k. For each
k > 2 there exists a nontraceable L*H graph that is L™C for m = 0,1, ...,k — 1 but
that is not L'H for 0 <1 < k that has order 10 + 2k.

Proof. By Theorem3.1.3| the smallest connected nonhamiltonian LH graph is of or-
der 11, and in Theorem {4.2.7| we showed that if G is connected, LC', nonhamiltonian
and L*H, then n(G) > 13. From Theorem we know that the smallest con-
nected nontraceable LH graph is of order 14. Therefore the result holds for k£ =1
and k = 2.

To prove the general case, we will show how to construct such graphs using Ky, o-
identification. Combine two copies of K3 using Ky o-identification. This results
in an L*H graph Hj, that is L™C for m = 0,1, ...,k — 1 of order k + 4, that contains
two vertices u and v of degree k + 2, and u ¢ v. By Lemma 4.3.14] we can use
Nlu] to combine Hy with k + 2 copies of K3, and we can use N[v] to add another
three copies of Kj.,3 to create the L¥H graph G}, that is L™C for m = 0,1, ...,k —1,
where n(Gy) = 9 + 2k. Further note that Gy has a vertex cutset V(Hy) of order
k + 4, the removal of which breaks Gy into k + 5 components, meaning that Gy
is not hamilonian. To create a nontraceable graph, use N[v] to combine G} with

another copy of Kj,3 to create the L*H graph G. Note that n(G},) = 10 + 2k and
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that G, contains a vertex cutset of order k+ 4, the removal of which results in k +6
components, meaning that G is not traceable. Figure illustrates these graphs
for k = 2.

We still have to show G and G’ are not L™ H, where 1 < m < k. The two graphs
Gy and GY are the graphs in Figure [1.3] In G and G5, (N(w)) (where w is the
vertex indicated in the figure) is the Goldner-Harary graph, which is the smallest
nonhamiltonian LH graph. It follows that for k = 2, G} and G}, are L*H but not
L™H for 1 < m < k. Using induction on k, assume that G} and G}, are L*H graphs
that are L™C form = 0,1, ..., k—1 but not L™H, where 1 < m < k. In the subgraph
Hj, in both G}, and G}, let the graph induced by the k + 2 vertices of degree k + 3
be Wy,. Add vertices u; and w; to Gy, and G, to create the graphs Fyy and Fy ;.
In Fyyq and Fj ., uy is adjacent to the vertices u and V(W) and in Fyiq, wy is
adjacent to all the vertices in V(G}) and in F,,, w; is adjacent to all the vertices
in V(GY},). Now Fj.y and F,, are the graphs G41 and G, constructed above and
(Np,,, (w1)) is the graph Gy, and (N (w1)) is the graph Gj. See Figure (4.6] for an

illustration of the technique.

F
”/4!_
X e

X
Wi i —

}
e 2
<7

Figure 4.6: Converting an L?H graph to an L3H graph.

This completes the proof. O

I now turn my attention to minimum orders of connected nonhamiltonian graphs

that are L"H, m=1,2,...,k.

Theorem 4.3.24. For any k > 1, there exists a connected nonhamiltonian graph of

order 9+ 2k that is L™H for everym =1,2,... k.

Proof. A connected nonhamiltonian graph Gy of order 9 + 2k that is L™H for

m = 0,1,....,k can be constructed in the following way. Start with a K}, graph
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W with V(W) = {wg, w1, ..., wgr3} and add a vertex u that is adjacent to all
vertices in V(W). Then add k + 4 vertices v;, i = 0,1,...,k + 3, where N(v;) =
{w;, wit1,...,Witky1}, where subscripts are taken modulo k + 4. Figure shows
such a graph for £ = 2. Graph G11B in Figure [3.5 is the graph for k = 1.

To see that Gy, is nonhamiltonian, note that V(W) is a cutset, |V(W)| < V(G)/2
and V(G) — V(W) is an independent set of vertices. It remains to be shown that
Gris L'H, m = 1,2,...,k. The induced graphs on the neighbourhoods of each
of u, v, v1, ..., vk are complete graphs, and it follows that (N(zo) N...N N(z;))
is hamiltonian, where xy € {u,vo,v1,...,vk43} and {za,...,2;} C N(zp) and j <
k—1.

To prove the result for the intersection of neighbourhoods of vertices in V (W),
we will use induction on k. It is easy to see that G; and G5 meet the require-
ments of the theorem. Now assume that Gy is L™ H, m = 1,2,...,k. By inspec-
tion we find Gy, we find that (Ng,,,(w1)) = G — vy. It follows from Corollary
that (Ng, ,(wy)) is L™H, m = 1,2,...,k. Also, (Ng,,,(w1)) is hamiltonian:
WoVoW3 Vg4 4WaV3W5Vy . . . W14V 3WoUwWo i a Hamilton cycle.

Note that (N(w;)) = (N(w;)), 4,7 € {0,1,...,k+ 3}, so the result follows. O

Figure 4.7: A connected graph of order 13 that is both LH and LLH but not

hamiltonian.

In the light of Conjecture [4.1.2 it is interesting to note that the graphs con-
structed in the proof of Theorem are locally (k + 1)-connected, and contain
an induced K13, but as the proof of Corollary makes clear, do not con-
tain an induced K j;i4. Conjecture is therefore the best possible, and the

Oberly-Sumner conjecture is the best possible in a very strong sense.
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Corollary 4.3.25. For any k > 1 there exists a connected nonhamiltonian graph

that ©s L™H for m =1,2,...,k that does not contain an induced K j+4.

Proof. Consider the graph Gy that is L™H for m = 1,2,... k constructed in the
proof of Theorem [4.3.24] We use the same nomenclature as in the proof of Theorem
. The vertex in a K ; star that has degree greater than one is referred to as the
centre vertex of the star. Since the neighbourhoods of the vertices u, vy, v, ..., Vgiyg
all induce complete graphs, it is clear that none of these vertices can be the centre
vertex of an induced K7 j14. Since (N(w;)) = (N(w;)) for {4,5} € {0,1,...,k+ 3},
we need only consider (N (wg13)). N(wgss) = {wo, w, ..., Wi, U, V2, Vs, ..., Vgss}
Since ({wo,wy, ..., wrio}) induces a complete graph, say Wyys3, and w; ~ u, i =
0,1,...,k+ 3, and v;, i = 0,1,...,k + 3, only has neighbours in V(W) it follows
that a((N(wk+3))) = k + 3, where « is the independence number. O

Similar constructions for connected nontraceable graphs that are L™ H for m =
1,2, ...,k do not yield graphs of order 10 4 2k, as is the case for nontraceable L*H
graphs that are L™C', m =0,1,...,k—1, but rather graphs of order 12+ 2k. This is
because it is not possible to add another vertex of degree k+2 to the nonhamiltonian
graph in such a way that the resulting graph is still L™ H for m = 1,2, ..., k. Figure
[4.8)is an example of such a nontraceable graph that is LLH and LH of order 16.
It is not known at this stage whether it is possible to improve on this result. It
is speculated that this is due to these graphs being LH, since for connected LH
graphs, the smallest nonhamiltonian graph has order 11 (= 9+ 2k), but the smallest
nontraceable graph has order 14 (= 12 4 2k).

NI

W7
7
4»&‘%-?&{

Figure 4.8: A nontraceable LH, LLH graph of order 16.

Next I investigate the complexity of the Hamilton Cycle Problem for L¥ H graphs.
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I start with a theorem for L2H graphs.

Theorem 4.3.26. The Hamilton Cycle Problem for connected, locally connected
L?H graphs with maximum degree 12 is NP-complete.

Proof. The proof will follow the same pattern as the proofs of Theorems [2.3.6| and
. We start with a cubic graph G’ and construct a connected, LC, L?H graph
G that is hamiltonian if and only if G’ is hamiltonian.

Each vertex in G’ is represented by a copy of K5 in GG, and will be referred to as
a node in G.

Each edge in G’ is represented by a more complex structure, that is based on the
graph H in Figure [4.9. This is the graph that was constructed as part of the proof
of Theorem and is shown in Figure (a) (it has been redrawn in Figure
to make it easier to represent the construction to follow). We use Kj-identification
to combine H with two copies of graph D in Figure [4.9|in the following way: using
the first copy of D we indentifty u; and z;, j = 1,2, 3,4, and using the second copy
of D we identify v; and z;, j = 1,2,3,4. This creates the graph F; shown in Figure
410l

>/
IS

N\
sl!

\ w.““ \

Figure 4.9: The graphs H and D used in the proof of Theorem [4.3.26|

The edges in G’ are represented by copies of F; in GG, and will be referred to as
“borders”. The borders are connected to the nodes by means of Ky-identification.
Let the vertices in a node in G be y1, y2, Y3, Y4, y5 and let the vertices in F; be labeled
as shown in Figure 4.10, Since each vertex in G’ has degree three, each node in G

is attached to three copies of F;. We identify the vertices as shown in Table
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Figure 4.10: The graph F; used in the proof of Theorem

(after each vertex identification, the resulting vertex retains the y-label). We use
the graphs F}, F5 and F3 for illustrative purposes. See Figure m (the heavy lines

in G represent edges belonging to the nodes).

Vertex in node | Vertex in F;
n W1,2
Y2 wW1,1
Ya W1,4
Ys w1,3
U1 Wa,3
Y2 W2,2
Ys w21
Ys W2,4
n w31
Yo W32
Ys w3,3
Yq W34

Table 4.1: Vertices identified in the proof of Theorem [4.3.26]

Checking the degrees of the vertices that have been identified shows that A(G) =
12 and by Theorem 4.3.11], Lemma [4.3.14f and Corollary 4.3.13| G is L?>H.

Figure 4.11] shows how a Hamilton cycle in G’ can be translated to a Hamilton
cycle in G (the heavy lines represent the Hamilton cycles). To see that if G is hamil-

tonian, then G’ is also hamiltonian, consider the graph H that forms the connection
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between two nodes in G. Note that s, us, uy, v, v3,v4 are the only neighbours of
the five unlabeled vertices in Figure Therefore any path cover of H contains
at most one path that has one end vertex in uy, us, us, us and one end vertex in
vy, Vg, U3, ¥4. Thus every Hamilton cycle in G has at most one path from node Z; to
node Z; that passes through the border between them. Since each node has three

borders incident to it, the result follows.

Nodes and borders in G

i
N

Qﬁ \
XA

s

— =
—— —

""’//

Figure 4.11: Converting the graph G’ to the graph G in Theorem 4.3.26
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Graph G’ Z, =€ V(©)
Zs Z, is the corresponding
Z Z6 node in G

</
>
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Figure 4.12: Translating a Hamilton cycle from G’ to G in Theorem [4.3.26]

O

The proofs of Theorems [2.3.6] [3.3.5] and |4.3.26] rely on the existence of graphs

that are LT, LH, or L?H, respectively, and that have the following properties: they
are nonhamiltonian, but traceable between two vertices of minimum degree, and if
the order of the graph is 2q + 1, then the graph is q%l—tough. Note that the graphs
of order 9+ 2k constructed in the proof of Theorem have these properties for

all values of k. It follows that similar NP-completeness theorems are possible for
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all & > 3 for graphs that are L*H and L™C for m = 0,1,...,k — 1. The smallest
value of the maximum degree that these theorems yield depends on the choice of
neighbours for the vertices of minimum degree in the graphs of order 9 + 2k. As k
increases, there is increasing flexibility in the choice of neighbours for the vertices
of minimum degree. Detailed calculations for £ = 3,4,5,6,7,8 show that the HCP
for L*H graphs that are L™C for m = 0,1,...,k — 1 is NP-complete for maximum
degree 3k + 6. When doing these calculations, the constructions follow a regular
pattern and there is every reason to expect that the relationship 3k + 6 will hold for
all £ > 1.

When looking at the NP-completeness of the HCP for graphs that are L™ H for
m = 1,2,...,k, we don’t have the advantage of a theorem equivalent to Lemma
4.3.14] This means that any construction has to be checked in detail to confirm that

the resulting graph is L™ H for m =1,2,...,k. | begin with k = 2.

Theorem 4.3.27. The HCP for graphs that are both LH and LLH with mazimum
degree 13 1s NP-complete.

Proof. We use the same construction as in the proof of Theorem [4.3.26], except that
now the graph H is the graph shown in Figure [1.7 We combine H with two copies
of the graph D to create the graph shown in Figure [£.13] When connecting borders
to nodes to construct the graph GG, we take care to limit the degree of vertices in the
nodes to 10, as shown in Figure [£.14] Since the smallest connected nonhamiltonian
LH graph has order 11, this ensures that in G, for any vertex v that lies in a node,
(N(v)) is a hamiltonian graph. We still have to confirm that for any vertex u that
is in a border and adjacent to a node, (N(u)) is hamiltonian. This is easily done,
since there are only 8 such vertices in any border, and by symmetry, only one border

has to be checked (see Figure [4.14). It follows that G is both LH and LLH.

Figure 4.13: A border used in the construction of the graph G in Theorem [4.3.27]
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Z
Graph G’ z “ z € V(G)
: Zs Z; is the corresponding
Zy Z6 node in G

S AN
r"i'lI’A,%'

Figure 4.14: Translating a Hamilton cycle from G’ to G in Theorem 4.3.27|

Again H has the properties discussed in the paragraph above this theorem, so
we can assume that if G is hamiltonian then G’ is hamiltonian. To see that G is
hamiltonian if G’ is hamiltonian, the reader is referred to Figure where the

heavy lines represent edges that are in a Hamilton cycle. O

Detailed calculations for the cases £ = 3 and k = 4 show that the HCP is
NP-complete for graphs that are L™H for m = 1,2,...,k that have maximum
degree 16 for £k = 3 and maximum degree 19 for £k = 4. There appears to be a
pattern according to which the HCP is NP-complete for graphs that are L™ H for

m=1,2,...,k that have maximum degree 3k + 7, for £ > 2. Again there is reason
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to expect that the relationship will hold for all values of k > 2, since the pattern of
the construction is quite regular. It is an interesting question whether these results
are the best possible, particularly since for £ = 1 we know the HCP is NP-complete
for maximum degree 3k + 6 (Theorem [3.3.5).

Finally, some additional properties of L*¥ H graphs will be derived.

Theorem 4.3.28. For any i > k + 2 there exists a nontraceable LEH graph G that
is LC form =0,1,....k — 1 such that 6(G) = i.

Proof. Starting with the nontraceable L* H graph G/, that is L™C form = 0,1, ..., k—
1 of order 10+ 2k constructed in the proof of Theorem 4.3.23| one can construct the
graph G by using K} o-identification to combine G, with k + 6 copies of K1, each
time using a different vertex of degree k + 2 in Gj.. It is easy to arrange matters so
that all vertices of degree higher than k£ + 2 in G, are used at least once in Kj -
identification. To see that GG is nontraceable, note that GG contains a vertex cutset
of k+ 4 vertices (the k + 4 vertices of degree greater than k + 2 in G}), the removal
of which breaks G into k + 6 components. O

It is already known that in a connected LH graph the detour order can be a
vanishing fraction of the order of the graph ([16], Theorem [3.6.3]). A similar result
is possible for L* H graphs that are L™C for m = 0,1, ...,k — 1. To prove this I will

need the following two lemmas.

Lemma 4.3.29. Let Ty be a tree of height d, such that all leaves are at height d,
and all vertices that are not leaves have degree r > 2. Let T} be a subgraph of Ty

obtained by starting at the root vertex and excluding one branch of Ty (and all its

) — 0.

subbranches) at each vertex. Then limg_,q. Ty =

Proof. Let the root vertex of T, be vy and let the set of vertices in V' (T}) at distance
j from vy be {vj1,vj9,...,v;,5}. Then n(Ty) = S0 7% and n(T4) = S0, (r — 1)%.
It follows that
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Corollary 4.3.30. If each vertex of Ty in Lemmal{.3.29 is replaced by a connected

graph of m wvertices, the result still holds.

n(Ty)

m Yo (r=1)°
n(Tq)

myL o) 1.) and the result follows

as before. O

Proof. This simply yields limg_, = limg_o0o

Theorem 4.3.31. For k > 1, if G, is an LFH graph of order n that is L™C,

m=0,1,...,k—1 with the smallest possible detour order D,,, then lim,,_, % =0.

Proof. We will show how to construct a family L* H of graphs for which lim,,_, % =
0. Use K} o-identification to combine two copies of K, 3, resulting in a graph Hy
of order k + 4. Let u,v be the two nonadjacent vertices in Hg. Then (N(v)) =
(N(u)) = (V(Wg)) = Ko, so each of u and v lies in k + 2 distinct copies of Ky .
Now use K} o-identification to add 2(k + 2) vertices to V(Hj) by combining Hy,
with 2(k + 2) copies of Ky 3 to create the graph Xj. This is done using each of the
k + 2 distinct sets of vertices that include u and k + 1 of its neighbours, and the
k + 2 distinct sets of vertices that include v and k£ 4 1 of its neighbours. Label the
vertices that have been added in this way {uy, ua, ..., urs2} and {vy,va, ..., Vgya}
where {uy,ug, ..., upo} C N(u) and {vy,vq,..., 0512} C N(v). Now for each u;
1 =1,2,...,k+ 2, add k 4+ 1 vertices to the graph by successively combining the
graph with k£ 4+ 1 copies of Kj.3, each time including u; and the latest vertices
that have been added in the set that is used for K} o-identification. This results
in u; lying in a Ky, call it U;, that includes a vertex of minimum degree, which
implies that U; can be used in Kj,o-identification. The same is done for each v;
t = 1,2,...,k + 2. The resulting graph is labeled Gy. Figure |4.15 shows Gy for
k = 2. From Theorem if follows that Go is an L*H graph that is L™C,
m=0,1,... k-1

Gy has vertex cutset V(Hy) of order k + 4, the removal of which results in a
graph consisting of Uy, Us, ..., Ugio, Vi, Vo, ..., Viio, and none of these subgraphs
is connected to any of the others. It follows that a longest path in GGy can only
include vertices from at most k£ +5 of these subgraphs. The graph G is constructed
from Gy and and a further 2k + 4 copies of Gy, labeled Gy 1,Gog,. .., Gook+a. The
subgraphs in G, 1 = 1,2,...,2k + 4 are labeled in the same way as in G, except
that the subscript will be preceded by the subscript of the graph. For instance, the
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subgraph in Gj; corresponding to Uy in Gy is labeled U; 4. For i =1,2,...,k + 2,
identify U; in G with U;; in Gy; and identify V; in Gy with V;; in G ;yx42. Since
a longest path in GGy can only include vertices from at most k 4+ 5 of the elements
of Uy,Us, ..., Ugyo, V1, Vo,..., Viio, if follows that only vertices from k + 5 of the
graphs Go1,Gog, ..., Goak+a can have vertices on any given longest path in Gj.

In the graph G, each U, ; and V;;, 4,5 = 1,2,...,k + 2, © # j subgraph can be
used to combine (G; with another copy of GGy to create the graph GG5. This process
can continue indefinitely. This creates a tree-like structure, where each node is
represented by a copy of Hy. Since |Hy| = k+4 and each Hy, is adjacent to (2k+4)
K19 subgraphs (the subgraphs represented by U;; and V};), it follows that at each
node of the tree-like structure a longest path in G; misses (2k+4) — (k+5) branches.
From Corollary the result follows. O
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Figure 4.15: The graph G| used in Theorem {4.3.31]

The following two theorems are intuitively obvious, but are included for the

record.

Theorem 4.3.32. Let G be a nontraceable L*H graph thatis L™C, m =0,1,..., k—

1 of order n with the smallest possible size S,. Then lim,, . \E(S—I?n)\ = 0.

Proof. Consider the order 10 + 2k nontraceable L*H graph G’ that is L™C, m =
0,1,...,k — 1 constructed in the proof of Theorem 4.3.23| |E(G")| = (k + 2)(k +
1)/2+2(k+2)+ (E+6)(k+2) = (k+2)(3k +17)/2. Use Kjo-identification
to combine GG' with copies of itself in a long chain to create the graph H; where
i is the number of copies of G’ that have been combined. Then |E(H;)| = i(k +
2)Bk+17)/2—(i—1)(k+2)(k+1)/2=i(k+2)(2k+16)/2+ (k+2)(k+1)/2, and
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V(H;) = i(2k+10) — (i — 1) (k+2) = i(k+8) + (k+2). So we have lim,,, 2L —

: i(k+2)(2k+16)+(k+2) (k+1)
lim; 0 G 8) - (k1 2)) G (k1 8) - (k1) 0.

U

Theorem 4.3.33. Let G be a nontraceable L*H graph thatis L™C, m =0,1,..., k—

1 of order n with the greatest possible size S,,. Then lim,, \E(S—I?n)\ = 1.

Proof. Consider the order 10 + 2k nontraceable LFH graph G’ that is L™C, m =
0,1,...,k — 1 constructed in the proof of Theorem [4.3.23] |E(G")| = (k + 2)(k +
1)/24+2(k+2)+ (E+6)(k+2) = (k+2)(3k+ 17)/2 and |V(G)| = 2k + 10. Use
K} o-identification to combine G' with K; to create the graph H. Then |E(H)| =
(k +2)(3k + 17)/2 +i(i — 1)/2 — (k + 2)(k + 1)/2 = (2 — i + 2k? + 20k + 32)/2

and |V(H)| = 2k +10+i — (k+2) = k+8+i. So we have lim, o ik =

(12 —i+2k24+20k+32) _ 1 u
(i+k+8)(i+k+7)
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Theorem 3.3.

Theorem Let G be a connected nonhamiltonian LH graph of order n = 12. Then
A(G) =9.

Proof. Let w be a vertex in V(G) of maximum degree A, and let N(w) = {vy,v9,...,0a},
where the vertices are numbered such that C' = vjv,...vav; is @ Hamilton cycle in
(N(w)). Let X = {x1,x9,...,212_a_1} be the vertices not in N[w]. Until indicated

to the contrary, assume that there are no edges between vertices in X.

We start by making some claims (note that if |[X| = 3 then A = 8). For
convenience, the subgraphs forbidden by the claims to follow are shown in Figure
A1l

Claim 1: If | X| = 3, then if {v;, v;11} C N(zy), if follows that {v;, vj11} & N(zy),
i k41 ke {1,253}

Proof of Claim 1: Let vy,vy € N(2z1) and v;,v;41 € N(x2), where ¢ > 2 and let
vk, v, € N(x3), where k,1 € {1,2,...,A}, [ # k. There are two cases to consider.

Casel. If k € {2,3,...,i}and [ € {1,i+1,i+2,...,A}. Then viz1vv3 . .. Vp_1WV_1
U9 ...V 1T ViV 1 ... UT30041 - .. VAV is @ Hamilton cycle in G.

Case 2. If k,l € {2,3,...,1} then v1x V903 . . . VRZ3VV;_1 « . . Vg1 W Uy 1 U142 - - - VT2
Vit1Viz2 - .- Uav; is a Hamilton cycle in G (here we assumed [ > k).

By symmetry, and since 6(G) > 3, the result follows.

Claim 2: If A(G) <8 then |[N(v;) N X| <2,ie{1,2,...,8}.

Proof of Claim 2: Let {1, 29,23} C N(v;). Since {x1, 22, 23} is an independent
set, a Hamilton cycle in (N (v;)) contains at least four vertices in N(w) N N (v;).

A(G) < 8 implies that A(G) = 8 and that say, 1 € N(v;_1) and say, 3 € N(v;11),
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which is counter to Claim 1.

Claim 3: If | X| = 3, {vi,vis1} C N(x1), and v; € N(xq), @ # j, then vy ¢
N(x3).

Proof of Claim 3: Without loss of generality let {va, v} C 21, let 3 ~ v; and
T3~ vir1, t A, and let vy ~ x9 and let v; ~ x3.

We know from Claim 1 that x5 ¢ v;11 and x3 % v;. By symmetry there are three
cases to consider.

Casel: k€ {1,2,...,i—1}andl € {i+2,i+3,..., A}. Then v1vs ... vkT20;0;_1 ...
Vg 1WU_ 1V - .. Vi1 X3V 0141 - - - VAT U1 1S & Hamilton path in G.

Case 2: k,l € {i+2,i4+3,...,va}, k> 1. Then v1vy. .. 0;ToVkVk_1 - . . VTV 1Vi42

U1 WU 1 Vg2 - .. UAT1V; 1S @ Hamilton path in G.
Case 3: k,l € {i+2,i4+3,...,0a},l > k. Then v1vy . .. 0;ZoVkVk11 - - . VTV 1 V42
Vg 1WUL Vg - .. UAZ1V; 1S a Hamilton path in G.

Claim 4: If | X| = 3, then z;v;xpvi2, j, k.l € {1,2,3}, j # k # [, is not a path
in G.

Proof of Claim 4: Without loss of generality let xv,z9v5x3 be a path in G. By
Claim 1, 21 o0 vg and z3 o4 vs. If 1 ~ v3, then v3x1v1x9v973 is a path in G| and since
NJw] is traceable between any two elements of N(w) and §(G) > 3, G is Hamiltonian.
Similarly, x3 o6 wvs. Therefore z; and x3 each have at least two neighbours in
{vy,v5,v6,v7} and it follows from Claims 1 and 3 that x; and x3 have the same
two neighbours in {v4, v, v, v7}. By symmetry we may assume the neighbours are
either v, and vg or v4 and v7, so that we may assume that vs ~ z; and v4 ~ z3. But
xo also has at least one additional neighbour. If o ~ v3, V1V8V7VgUsWV3T2V2X3V4T 1V,
is a Hamilton cycle in G. If x5 ~ v5, v12104230203wWV8V7VgV5 T2V 18 & Hamilton cycle
in G. If xo ~ vg, V121V4T3V2V3WV5VeV7V8 T2V 1S & Hamilton cycle in G. Therefore
o must be adjacent to either vg or v;. If x9 ~ vg, then x1 ~ v; and x3 ~ v; by
Claim 2. Then vqvgv721v4230203wW V5V, is & Hamilton cycle in G. If x5 ~ v7, then
21 ~ vg and x3 ~ Vg and VUV L2V V3 WUV T3Ve 1V 18 & Hamilton cycle in G. This
completes the proof of Claim 4.

Claim 5: If | X| = 3, then it is not possible that both {v;, vi+1,vi12} C N(z;) and
{vi,viz2} C N(xy), j # k.

Proof of Claim 5: Without loss of generality let {vq, vy, v3} C N(z1) and {vy,v3} C

100



Local Properties of Graphs

N(z3). By Claim 2, x5 o v and x3 «¢ v3. By Claim 3, x3 o4 vq, 23 o4 vg and x3 % vy.
Since 0(G) > 3, {vs, ve, v7} C N(x3), but that is against Claim 1.

Claim 6: If | X| = 3, then it is not possible that both {v;, vi1, viya} C N(z;) and
{vi,vits} C N(xy), j # k.

Proof of Claim 6: Without loss of generality let {vy, v, v3} C N(x1) and {vy,v4} C
N(z3). By Claim 2, x3 «¢ v; and and by Claim 3, x3 % vq, z3 o v3, and 3 oL vs.
Since 0(G) > 3, x3 has 3 neighbours in {vy, vs, vg, v7}, but that is against Claim 1.

Claim 7: If | X| = 3, then it is not possible that {v;, vi41, viva} C N(z5), vig1 €
N(xy), and v;y3 € N(x;) j # k # L.

Proof of Claim 7: Without loss of generality let {vy,vo,v3} C N(21), vy ~ 29,
and vy ~ x3. By Claim 1, 3 o0 v3 and z3 o vs, by Claim 2, x3 % vy, and by
Claim 3 z3 70 v;. Therefore by Claim 1, x3 ~ vg and z3 ~ vg. By Claim 1 x5 o0 v,
and x5 o4 v3, by Claim 3 x5 ¢ v5 and xy % v7, SO x5 is adjacent to two vertices in
{vg,v6,v8}. If 29 ~ vy, VIVXVLV5VT3VV;WV3T V1 1S @ Hamilton cycle in G and if
To ~ Vg, V1V UgV5V4X3U8V7w Y31V 18 @ Hamilton cycle in G. The claim follows.

Claim 8: If | X| = 3, then it is not possible that both {v;,v;12} C N(x;) and
{vit1, viast C N(wy), j # k-

Proof of Claim 8: Without loss of generality let {vs,v2} C N(z1) and {vy,v3} C
N(z3). By Claim 3 z3 is not adjacent to at least one of v; and vy, so x3 must be
adjacent to at least two vertices in {vs, v4, Vs, Vs, V7, Vs }, say v; and v;, ¢ < j. Then a
Hamilton cycle can be found: vgz1vov1220304 . .. V; T3VV;_1 ... Vi1 WV 41012 . . . Vs,

We will now systematically work our way through the possible graphs for which
A(G) = 8 and | X| = 3, incrementing first the neighbours of 3, then the neighbours
of x5, and lastly the neighbours of x;. So we start with x; being adjacent to vy, vs
and vz, and x9 being adjacent to v;. For the sake of brevity, the claims will only
be referred to by their numbers, so for example, Claim 1 will be referred to simply
as (1). Each iteration will be headed by the edges between X and N(w) that are
assumed to be in G in that iteration. Note that if ; ~ v; is specified in the header of
the iteration, then vy ¢ N(z;) if k < j unless such edges are also explicitly specified
in the header of the iteration.

{v1,v9,v3} C N(x1), x5 ~ v;. Note that ve, v3, v, vs ¢ N(z2) by (1), (5) and (6)
and vy, v9, v € N(x3) by (2), (4) and (3). So by (1) we have N(x3) = {vs,vs,v7}.
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b kLR =

Claim 1 Claim 2 Claim 3 Claim 4
Claim s Claim 6 Claim 7 Claim 8
Claim g Claim 10 Claim 11
Claim 14 Claim 15 Claim 16
Claim 16a Claim 17 Claim 18 Claim 19
Xy
Claim 20 Claim 21 Claim 22

Figure A.1: Forbidden subgraphs according to the claims in the proof of Theorem
3.3.4] Note that for Claim 16a the claim is somewhat different: the subgraph is not
forbidden. There are no sketches for Claims 12 and 13.
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Then by (3) vg & N(xz2) , so N(z3) = {v1,vs,v7}. Also, vy, vs,v7,v8 ¢ N(x1) by
(2) and (8). If vg ~ w1, then vivyz1V4V5T2V7T3V3VwWVsY; I8 a Hamilton cycle in G,
so N(z1) = {v1,v9,v3}. Now, since (N(v;)) is hamiltonian and d(z1) = d(z2) = 3 ,
and A(G) = 8, it follows that {vs, v3, vs, v7,v8} = N(v1) N N(w). When we consider
(N (vs)), by a similar argument we find that {vy, vs, v4, v6, v7} C N(v5). Note that if
the edge v4vg is added the graph becomes hamiltonian: v;ve21v3v4V6WV8V7T3V5L2V1.
Therefore a Hamilton cycle in (N(vs)) must include the path vzzsvrzeviw. It is
then clear that it is not possible to extend the path to include both v4 and vg and

end at vs. Therefore (N(v5)) is not hamiltonian, and the case is not possible.

We have now proved Claim 9: If | X| = 3 and {v;, vit1,vire} C N(zj), then
v; & N(xy), k # 7.

{v1,v9,v3} C N(21), 2 ~ vo. By (9) v1,v3 ¢ N(x3) and vy,v3 ¢ N(x3). Also,
x3 o vy by (2), x3 o4 vs and x3 o vy by (7). Therefore N(z3) = {vs, vs, v7}, which is

counter to (1).
By (9) the next iteration to consider is

{v1,v9,v3} C N(21), 2 ~ v4. By previous cases, N(x2)UN (z3) C {v4, vs, s, v7, s}
Therefore by (1), N(zg) = N(x3) = {v4, vs,vs}. It follows that (N(vg)) is not hamil-
tonian, since |N(vg) N (N (x2) N N(z3))| < 2.

By (1) the next iteration to consider is
{v1,v9,v4} C N(z1), 2 ~v1. Now vq1,v9,v5 ¢ N(z3) by (2), (4) and (3), so by
(1), N(z3) = {vs3,vs,v7}. Then vy, vy, v5,v8 ¢ N(x3) by (3), so that x5 must have

two neighbours in {vs, vs,v7}. But if xo ~ v3, then vivazV4V5V5WVgV7T3V3TLV, 1S &
Hamilton cycle in G, and if x5 ~ v5, then vivox1v4v323 V7VgWVgVsT2v1 18 & Hamilton
cycle in G.

{v1,v9,v4} C N(21), 2 ~ vo. Now vy, v9,v3 ¢ N(x3) by previous case, (2) and
(3), so by (1) N(x3) = {v4,vs,v8}. Then vz, vy,vs,v7 ¢ N(x2) by (1), (2) and (3)
so N(xy) = {v9,v,vs}. Note that vs, v, v7,vs & N(x1) by (9), (2) and (8). Also,

x1 % vy, otherwise v141V5wWV7VaT3V4V3V22208v1 18 & Hamilton cycle in G. Therefore
N(z1) = {v1,v9,v4}. So, if (N(vy)) is hamiltonian, then {v,vs,vs,v8} C N(vy),
which implies that {vy, vo, v3, V5, vs, Vs, X1, T2, w} C N(vyg), so that d(vy) > 9.

{v1,v9, 04} C N(x1), x3 ~ v3. Now x5 o4 vy by (1), and x5 o vy by (3), therefore

by (1), x5 ~ v3. So by (1) and (3), x5 and z3 must share the same two neighbours in
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{vs, v, v7,v8}. If the shared neighbours are vs and vy, then vy Vo1 V4V3T2V5T3V7VaW VU]
is a Hamilton cycle in G. If the shared neighbours are vs and vg, then v vov3T2V52308
vrvgwuaxivy is a Hamilton cycle in G. If the shared neighbours are vg and vg, then
V1V9U3 LV X3Vs V7w U5sV42101 18 a Hamilton cycle in G. Therefore this case is not
possible.

{v1,v9,v4} C N(z1), 2 ~vy. Since by earlier cases, vy,vy,v3 ¢ N(x3) and

v1, Ve, v3 & N(x3), by (3) both o ~ vy and 3 ~ vy, but that is contrary to (2).

By (1) the next iteration to consider is

{v1,v9,v5} C N(z1), 2 ~ v;. Now vy, v9,vs ¢ N(z3) by (2), (4) and (3). There-
fore N(x3) = {vs,vs,v7} by (3). Then vy, vs,v5,v8 ¢ N(x2) by (3), (2) and (1), so

that N(z2) must have two vertices in {vg, v3,v7}, so by (1), zg ~ vy. If x5 ~ vy, then
V1U8U7 VWUV T3V5 L1 Vo Lov 18 a Hamilton cycle in G. Therefore N(x9) = {vy,vs, v7}.
Note by an earlier case, x; »# vy and x; ¢ vy. Also, 1 # wvg by (8), and if
r1 ~ vg, then vivorivgVsV WURVTT3V3Tov, is & Hamilton cycle in G. Therefore
N(zq1) = {v1,v9,v5}. Now, since (N(vs)) is hamiltonian, it must be the case that
{v1,v9,v3,v7} C N(vs), which implies d(vs) > 9.

{v1,v9,v5} C N(z1), 2 ~ vo. Now v1,v9,v3 ¢ N(x3) by (2) and (3). Therefore
by (1), N(z3) = {v4,v6,vs}. By (1) and (3) vs, v5,v7 ¢ N(x2). So N(x2) contains two

vertices in {vy, v, vg}. If 29 ~ vy, then v1VT2V4V3WV7VsT3VeVsT1 V1 18 & a Hamilton
cycle in G. If x9 ~ vg, then vivexovgV7VgT3V4v3 WVsT1v1 is a Hamilton cycle in G.
So this case is not possible.

{v1,v9,v5} C N(x1), 2 ~ v3. Now x5 and x3 are not adjacent to v; or ve by

earlier cases, and x5 o vy by (1) and x3 7 vy by (3), and by (3) we then get that
xg ~ v3. It follows by (1) and (3) that x and x5 must both have the same two
neighbours in {vs, vg, v7,vs}, and since x; ~ vs, x5 and x3 must both be adjacent to
vg and vg. But then vivov3r9v6308v7wWV4V521v1 is a Hamilton cycle in G.

{v1,v9,v5} C N(x1), Ty ~ v4. By earlier cases and (1) and (3), N(x2) = N(z3) =

{vy, v6,v8}. But then vjv9v3v4m9v62308v7WVsT1 v, is @ Hamilton cycle in G.

By (1), (3) and symmetry, this exhausts the possibilities where x; has two suc-
cessive neighbours in N(w). So for the remainder of this part of the proof, it can be
assumed that no vertex in X has two successive neighbours in N(w). We'll refer to

this as Claim 10. By (10) the next iteration is
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{v1,v3,v5} C N(x1), {v1,v3,v5} C N(z2). By (8), 23 is not adjacent to more

than one of vy and vy, so by (2) and (10), z3 ~ vg and z3 ~ vg and z3 is adjacent to
one of vy and vy. If x5 ~ vy, then vivswWVLT3V8V7VeVsT1 V3TV is @ Hamilton cycle in
G. By symmetry, x3 % vy, implying that d(z3) < 2.

{v1,v3,v5} C N(z1), {v1,v3,v6} C N(z2). Note that if x3 ~ vq, then by (8) x3 ¢

vy and x3 o vg, and by (10) 23 ~ vs and z3 ~ v7. Then v1VT3V5V,WVgV7VET2V3T1 V] 1S
a Hamilton cycle in G. Therefore z3 o vy, and by (10) and (2) N(x3) = {v4, vs, vs}.
But then vivov3zv5vWwWV7V8T3V6T2v, 18 @ Hamilton cycle in G.

{v1,v3,v5} C N(z1), {v1,v3,v7} C N(z3). Call this Subgraph 1 for later refer-

ence.

Note that if x3 ~ vy, then x3 ¢ vy and x3 % vg by (8) and if x5 ~ vg, then
V1 V930U U4 WV V7 L2311 18 a Hamilton cycle in G. Therefore, if x3 ~ vy, then
N(z3) = {vg,vs,v7}. Note by earlier cases and by (2), z; and x5 can have no
additional neighbours. Since z; and z3 share only vs as a common neighbour, the
requirement that (N(vs)) be hamiltonian implies that d(vs) > 9.

If 23 o4 vq, then by (10) and (2) N(z3) = {v4, vs, vs}, and then vy vavV3T1V5V,WVeT3
vgU7x2v is a Hamilton cycle in G.

Note that by (10), if 25 ~ vy, then x9 o vg, so the next case to consider is

{v1,v3,v5} C N(z1), {v1,v4} C N(x2). Note that vs,vs,vs ¢ N(z3) by (10)
and (8), so that N(xg) = {vi,v4,v7}. If 23 ~ vy, then by (8) z3 # vy and

x3 4 vg, so that N(z3) = {ve,vs,v7}, and then vyvr3V5V6wWVgV7 TV V3TIV] 1S &
Hamilton cycle in G so it follows that x3 o0 ve. If x3 ~ wg then x3 must have
two neighbours in {vs, vg, v7, v}, but x3 ~ vg results in v;VeV3T3VEWVgV7TLV4V5T1 VY
and w3 ~ vg results in vyVaV3T3V8V7 T2V WVgVsT1v; as Hamiton cycles in G. There-
fore N(x3) = {vs,vs,v7}. This subgraph (excluding xs) is isomorphic to the graph
labeled Subgraph 1.

Note that by (10), if x5 ~ vy, then x5 o4 vg, so the next case to consider is

{v1,v3,v5} C N(x1), {v1,v5} C N(x2). In this case x ¢ vg and xq ¢ vg by (10),
therefore N(zq) = {v1,vs,v7}. Now, if 3 ~ vg, then x5 o4 vy by (2), x3 2 v3 by (10),

x3 % vy by (8) and x3 £ vs by (2), so then z3 ~ vg and x3 ~ vg, but this is counter
to (8). Therefore, z3 4 vy. The same argument shows that x3 ¢ vs3. Therefore it

must be that N(z3) = {vy, v, vs}, but that is counter to (8).
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{v1,v3,v5} C N(x1), {v1,v6} C N(x2). By (10) x5 can’t be adjacent to v; or vs,

so this case is not possible.
We can now increment x5’s first neighbour:

{v1,v3,v5} C N(21), v2 ~ vo. Now v3,v4,v8 ¢ N(z2) by (10) and (8), so that

N(zg) = {vg,vs,v7}. The same argument shows that if z3 ~ vy, then N(z3) =
{vg, v5,v7}. But this is counter to (2). Therefore x3 ¢ vy. If 3 ~ v3 or x3 ~ vy,
then by (2) and (10) {vg,vs} C N(x3) and v1v9v3v,wWVET3V8V7T2V5T1V1 is & Hamilton
cycle in G. Therefore this case is not possible.

{v1,v3,v5} C N(x1), x2 ~v3. By previous cases and (2) and (10), N(z3) =

{v4, vg, vs}, but this is counter to (8).
{v1,v3,v5} C N(x1), x9 ~ vy. By (10) N(z2) = {v4,vs,vs} which is counter to
(8).

We must therefore increment the neighbours of x;. Based on the cases studied

up to this point, we can add another claim.
Claim 11: No vertex in X can be adjacent to v;, v;1o and v;44.
By (10) the next iteration is

{v1,v3,v6} C N(x1), {v1,v3} C N(x2). By (10) and (11), vy, vs,v7,v8 ¢ N(x2).

Therefore x5 ~ vg, and by (10) and (2), 3 is adjacent to one of {v4, v5} and to one
of {vr,vs}, implying that x3 ~ vy by (2), so that x5 o vy by (8). Then z3 ~ vs, and
by (8) x3 o v7 , so that x3 ~ vg, but this is also against (8).

{v1,v3,06} C N(x1), {v1,v4} C N(x). If x5 ~ vy, then vz, vy,v3 ¢ N(x3) by
(8) and (10), so that N(z3) = {va,vs,v7}. Then by (8), xo % vg, so that N(zg) =

{v1,v4, v7}, but then vy x1v3V23V7V8WVG VsV4T2v; is @ Hamilton cycle in G. Therefore
x3 % vy. It follows that z3 ~ wvs, else N(x3) = {wv4,vs,vs}, which is counter to
(11). Then if z3 ~ v5, V1VWVgV7VET1V3T3V5V4T20; is a Hamilton cycle in G. So
{vg,v8} C N(x3). But then vjvov3x1v623v8V7wWV5V4x201 is @ Hamilton cycle in G.

{v1,v3,v6} C N(x1), {v1,v5} C N(x2). From (10) we know that the remaining

neighbour of =y is vy, If x3 ~ vy, then by (10), x3 % vz and by (8) z3 % vy
and 3 ¢ vg, so by (10) we get N(z3) = {vg,vs,v7}, but then vjvexsv5V4V321 V6
wugvrTovy is a Hamilton cycle in G, so x3 ¢ vy. Now if x3 ~ v3 and z3 ~ wvg,
then v;v9V3x3V8V7ToVsV WYL V1 is a Hamilton cycle in G. If x3 ¢ vg, then by (10)

N(x3) = {vs,vs,v7}, but this is counter to (11), so x3 7 v, and by (10) and (11),
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vy can’t be the first neighbour of x3, so we must increment the neighbours of x,.
Note that if the second neighbour of x5 is vg, then the third neighbour must be
v, which is counter to (10). By (10) the next iteration is
{v1,v3,v6} C N(21), 2 ~ vo. By (10), x2 o v3 and by (8), x2 o vy and x5 7L vg,
so it follows that {vg,vs,v7} = N(xg). If 23 ~ vy then by (10) and (8), N(z3) =

{vg, v5, v7} and v1VgVIT3V2TLV5V, V3WVeT1 V1 is & Hamilton cycle in G, and so z3 7 vs.
If 3 ~ v3 and x3 ~ vs, then viVoToVsT3V3V WVV7VgX 1V 18 & Hamilton cycle in G,
and if x3 ~ v3 and x3 ~ vg, then vivyxV5V,WVVVgT3V3T1V, 18 a Hamilton cycle
in G, so by (8) and (10) =3 7 vs3. Then by (10) and (11) 3 7 vy, and therefore

T9 o vs, s0 we have a contradiction.

{v1,v3,v6} C N(x1), x5 ~ v3. In this case by (2) and (10) we must have N(z3) =

{v4, v6, vs }, which is counter to (11).

By (10) and (11) it is not possible that the first neighbour of x5 is vy, so we must
increment the neighbours of x1, but by symmetry all the possibilities have already
been exhausted. We have now completed the proof that if |X| = 3 and the vertices
in X are independent, and n(G) = 12, then A(G) # 8.

Note that the proof up to this point only depends on the fact that for an isolated
vertex x in X, there are at least three edges between N(w) and z, and that a
Hamilton cycle can go through x via any two of these edges. If the vertex z is
replaced by a pair with an edge between them, x4, the same holds. To see this,
note that local hamiltonicity requires that the two vertices xy and x, must have
at least two neighbours in N(w), say v; and v;, in common, and the requirement
of G' being 3-connected implies that at least one of them, say x;, must have third
neighbour, say vx. Now a Hamilton cycle can go through xix, via any two of
these three edges: vyx129v;, VX122V, v;w122v;. This means that if a section of
the proof holds for X consisting of m isolated vertices, the same proof will hold if
comp(X) = m, where one or more of the components of X consists of a Ky, and the

other components of X are isolated vertices. We will refer to this as Claim 12.

By Claim 12 it follows the above proof for A = 8 and |X| = 3 also holds for

A =7 and comp(X) = 3, except that there are fewer cases to consider.

We now proceed to consider the case where A(G) = 8 and comp(X) = 2, that
is, the edge x1x5 is in E(G).
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We have some additional claims for this part of the proof:

Claim 13: From (12) it follows that x; and x5 share at least two neighbours in
N(w) and |N(w) N N(x1) N N(xg)| > 3.

Claim 14: If S is a Hamilton path of a component of X, then in G the path
v;Sv;41 is not in any component in X, where the indices are taken modulo 8.

Proof of Claim 14: Since N|w] is traceable between any two vertices in N(w),
and 6(G) > 3, the result follows.

Claim 15: For no vertex v; in N(w) do we have {z1, x9, 23} C N(v;).

Proof of Claim 15: If N(v;) C {21, x2, 23}, then by Claim 14 v;_; and v;;; are
not adjacent to any vertices in X. Since comp(X) = 2, and (N (v;)) is hamiltonian,
it follows that |N(v;) N N(w)| > 5 which implies that d(v;) > 9.

Now, if {v1,v3} C N(z1) N N(x2), then if x5 o4 vy, then N(x3) = {v4,vs, vs},
but then vxizv3vwWVrV6V5V,2308v1 1S a Hamilton path in G. So vy ~ x3. But
then if v; is a second neighbour of x3, i € {4,5,6,7,8}, v1X1L2V3VT3V;V;_1 ... V4
WV;11V;40 ... Vg1 1S a Hamilton path in G. So the neighbours that x; and x5 have
in common are not at a distance of two in C'.

If {v1,v4} C N(x1) N N(z2), then by (14) and (15) z3 ~ vy or x3 ~ v3. Without
loss of generality let 3 ~ vo. Then z3 must have a second neighbour v;, ¢ €
{5,6,7,8}. But then v1212o040302230;0;_1 . . . UsW Vi1 1Vi42 - . . V307 is a Hamilton path
in GG. Therefore the neighbours that x; and x5 have in common are at a distance of
four in N(w).

If v; and v5 are the two neighbours that x; and x5 have in common and zj3 is
adjacent to any of vy, vy, vg and vg then a Hamilton cycle in G can be found in
the same way as in the previous case. But then x3 can have only two neighbours.
Therefore it is not possible that A(G) = 8 if comp(X) = 2, and G is obviously
hamiltonian if comp(X) = 1.

This leaves the case where A(G) = 7 and | X| = 4. First we consider the subcase
where comp(X) = 4, and we make some fresh claims.

Claim 16: For ¢ € {1,2,...,7}, |[N(v;) N V(X)| < 2 and if {z;,z} C N(w),
j # k, then v;_y ~ x; and/or v;11 ~ z; (the latter requirement will be referred to
as (16a)).

Proof of Claim 16: This follows directly from the fact that the vertices in X are
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independent, that (N (v;)) is hamiltonian, and that A(G) = 7.

Claim 17: If {v;, v;41} C N(zy) and {vj,vj41} C N(zp), i # j, thenif {vy, vp1} C
N(z.), q#pF#r, then k € {i,7}.

Proof of Claim 17: The result follows from (1) and the facts that 6(G) > 3 and
Nw] is traceable between any two vertices in N(w).

Claim 18: If {v;, vi41} C N(z,) and {v;,v;41} C N(z,) where ¢ # j, and x, ~ vy,
and zy ~ Vg1, pFE qF# 1T £, then k € {i,j}.

Proof of Claim 18: Again the result follows from (1) and the facts that §(G) > 3
and N[w] is traceable between any two vertices in N(w).

Claim 19: There is no subgraph of G in which {v;,v;41} C N(x,), {vi} C N(z),
o, 041} © N(ay), and {os} © N(wi), i £, p £ a £ 7 £

Proof of Claim 19: If {vy,ve} C N(z1), {v1} C N(z2), {vs,vs} C N(x3) and
{vs} C N(z4), then xs 4 v; and x4 % vy by (17) and x5 # vy and x4 # v by (18)
and o % vz and x4 o4 vy by (17). Therefore x5 and x, must each have at least
two neighbours in {vy, vs, v6}, so by (17), N(x9) = {v1,v4, v}, which means that by
(16) N(z4) = {vs,vs,v6}, which is counter to (17). This scenario is therefore not
possible.

Let {vi,v2} C N(x1), {1} C N(x2), {v4,v5} C N(x3), {va} C N(z4). Then
Ty b v and x4 o4 vy by (17) and 5 o vz and x4 % v; by (18). Therefore by (16)
and (17) xg ~ ve, and by (16) {vs,vs} C N(z4), which is counter to (17).

By symmetry, this exhausts the possibilities and the proof of the claim is com-
plete.

Claim 20: There is no subgraph of G in which {z,, z,} C N(v;), {z,, x:} C N(v;),
i#ipEatT A

Proof of Claim 20: Note that if {1,292} C N(v;), then by (16a) without loss
of generality let vy ~ x; and then {z3,24} ¢ N(ve) by (16a). If {z1,22} C N(v1),
ve ~ xp and {z3,24} C N(v3) then by (16) and (19) we can say without loss of
generality that ve ~ 3. Then by (16) vy o4 xg, v3 % 9, by (17) v7 % x5 and by (18)
vy 90 k9. Then {vs,v6} C N(x2), which is counter to (17).

Now if {z1,29} C N(v1), vo ~ 21 and {x3,24} C N(vy4) then by (16a) and (19)
we can say without loss of generality that vz ~ x3. Then vy ¢ x4 by (1), v5 ¢ x4 by
(17) and v; o x4 by (18), so that by (17) x4 ~ v and x4 is adjacent to one of vy
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and vs. Then by (18) vs 7 x5 and by (17) vr 4 x5 and by (16) vy % 9, so that by
(17) x9 ~ vg and x5 is adjacent to one of v and vz. But then one of vy and v3 has
three neighbours in V' (X), counter to (16).

Now if {1, 22} C N(v1), vo ~ 1 and {x3,24} C N(vs) then by (16a) and (19)
we can say without loss of generality that vy ~ 3. Then by (16) vy ¢ x4, by (2)
vg 7 x4, and by (18) vy o4 x4, so that by (17) {va,v4} C N(z4), which implies by
(16) and (17) that xo ~ vz, which is counter to (18).

Now if {1, 22} C N(v1), vo ~ 1 and {x3,24} C N(vg) then by (16a) and (19)
we can say without loss of generality that vs ~ z3. By (17) 22 ¢ v; and x4 o v7.
Thus by (16) x5 and 24 must each have two neighbours in {ve, vs, v4,vs5}, and by
(17) and (18) these neighbours may not be successive in C'. This implies that o and
x4 must have the same two neighbours in {vy, v3, v4, v5}. But this is not possible by
(16) and (18).

Now if {x1, 22} C N(v1), va ~ 21 and {z3, 24} C N(v7) then by (16a) and (19)
we can say without loss of generality that vg ~ x3. This is counter to (18).

By symmetry, this exhausts the possibilities and the proof of the claim is com-

plete.

We will now attempt to allocate three edges to N(w) from each vertex in X.
We will rename the vertices in N(w) to make it clear that the sequence of vertices
in a possible cycle is not relevant here: N(w) = {a,b,c,d,e, f,g}. Without loss
of generality (since there have to be twelve edges incident to the seven vertices in
N(w)), suppose az; and axs are edges in G. Then by (20) x3 and x4 can’t share

any neighbours.

Then if we assume that x; and x5 do not share a second neighbour, we can
assume the following: N(x;) = {a,b,c} and N(z3) = {a,d,e}. Then if b ~ x3, by
(20) x5 and x4 can’t share any neighbours, so N(z4) = {c, f, g}, which means that
x1 and x4 share a neighbour, so x5 and x3 do not share neighbours. Therefore there
is no possible third neighbour for 3. We can then conclude by symmetry that z;
and x5 do not share any neighbours with x3 and x,. But then the only possible
neighbours for x3 and x4 are f and g. Therefore x; and x5 must share at least two

neighbours.

Now assume x; and x5 are both adjacent to @ and b. Then z3 and x4 still can’t
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have any neighbours in common, but there are only five vertices (c, d, e, f, g)
available for them to have as neighbours. So x; and x5 can’t share more than one
neighbour. Therefore we conclude that if A(G) = 7 and comp(X) = 4, then G

cannot be nonhamiltonian and LH.
All that remains is to address the cases where A(G) = 7 and comp(X) < 4.

By (12) the only scenarios that we still have to address are the ones where

comp(X) < 2 and none of the components of X is a connected pair.

Since G is obviously hamiltonian if X has only one component that can be traced
between two vertices that have distinct neighbours in N (w), there remain three cases
to consider: X contains either the path zox324, or K3, or the claw K 3. In all three
cases there is a two-path cover for X of which one of the paths is a singleton vertex,
call it x1, and the other path can be labeled zox3x4. We start by making two new
claims. The proofs of the claims follow readily from the facts that N[w] is traceable
between any two vertices in N(w), 6(G) > 3, and G is 3-connected, and are not

presented here.

Claim 21: x; can’t have successive neighbours in C' and if x5 ~ v;, then x4 ¢ v;_4
and x4 o4 v;yq.

Claim 22: If {v;,v;42} C N(x1), then 9 o4 v;11 and x4 % v;41.

Case 1: X = {x1,zox324}. By (21) we can say without loss of generality that
N(x1) = {v1,v3,v5}. By (22) it follows that ve,vs ¢ N(x2) and ve, vy & N(zy4). If

Ty ~ vy, then vy, v ¢ N(z4) by (21) and if x4 ~ v3, then vV1VV3L423T2V7V6WV4V5T1 V1
is a Hamilton cycle in G, and if x4 ~ vs, then v1vv3V,WVEVTT2T3T4V5T1V1 1S A
Hamilton cycle in G. Therefore, by symmetry, vg, v; ¢ N(z2) and vg,v; ¢ N(x4),
so that N(w) N (N(z2) U N(z4)) C {v1,vs,v5}. But each of 5 and 4 has at least
two neighbours in N(w), and if v; € N(x1) N N(x2) N N(x4), then by (21) d(v;) > 9.
Therefore this case is not possible.

Case 2: X = {x1, K3}. From the argument in Case 1 it follows that N(z;) =

{v1,vs3,v5}, and that without loss of generality we can claim that xzo ~ vy, 23 ~ v3
and x4 ~ vs. But now if we consider (N(vy)) it is clear that since z1 ¢ x9, local
hamiltonicity requires d(v;) > 8.

Case 3: X = K; 3. Let 3 be the vertex of degree 3 in X. By (21) and symmetry

in X it follows that no vertex in {1, xs, x4} can be adjacent to successive vertices
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in C, and if z; ~ v;, then x, # vy, j,k € {1,2,4}, j # k. So without loss
of generality, we can say that the vertices in {v1,vs,v5} are each adjacent to two
elements of {z1, x5, x4}. Since {x1, 22, 24} is an independent set, the hamiltonicity
of say, (N(v1)), requires that d(vy) > 8.

This completes the proof. O
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